LDL levels in the plasma are the most widely used clinical predictor for cardiovascular risk, and are absolutely determined by the extent of apoB secretion as nascent VLDL by the liver. ApoB is highly processed, and proper folding and lipidation are vital for its secretion. We will determine which proteostasis factors interact with apoB, and then evaluate these candidates by knockdown screening. This knowledge will help elucidate the complicated relationship of VLDL production to a variety of disease states, and we will use it to identify new strategies to modulate lipoprotein homeostasis. This project will involve three Specific Aims. In the first, we will apply high throughput multidimensional protein identification technology (MudPIT) to determine the lipid-dependent interactome of nascent VLDL from lysed HepG2 cells. MudPIT is an automated two-dimensional peptide separation technology combined with tandem mass spectrometry and computational fragment analysis, allowing high-throughput analysis of immunoprecipitated protein samples. By identifying the proteostasis factors that interact with apoB, we can determine which pathways are involved in apoB processing and trafficking during secretion. We will also develop assays for apoB lipidation. One will involve fusing fluorescent proteins to apoB, and using time-resolved FRET to determine particle size polydispersity. In parallel, we will develop an ELISA based colorimetric assay, whereby we will determine the effect of the extent of lipidation on the binding of various monoclonal antibodies to apoB. Finally, we will use these lipidation assays and the intuition from the proteometric results to perform knockdown screens for individual proteins whose expression is critical for proper apoB folding, processing and secretion.

Public Health Relevance

VLDL production is misregulated in any disease states, including hyperlipidemia and insulin resistance. We will identify the factors of the proteostasis network that regulate apoB folding and processing into VLDL, and characterize the impact of these factors on VLDL secretion.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Postdoctoral Individual National Research Service Award (F32)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-F04B-B (20))
Program Officer
Meadows, Tawanna
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Chen, John J; Genereux, Joseph C; Suh, Eul Hyun et al. (2016) Endoplasmic Reticulum Proteostasis Influences the Oligomeric State of an Amyloidogenic Protein Secreted from Mammalian Cells. Cell Chem Biol 23:1282-1293
Baranczak, Aleksandra; Liu, Yu; Connelly, Stephen et al. (2015) A fluorogenic aryl fluorosulfate for intraorganellar transthyretin imaging in living cells and in Caenorhabditis elegans. J Am Chem Soc 137:7404-14
Genereux, Joseph C; Qu, Song; Zhou, Minghai et al. (2015) Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J 34:4-19
Genereux, Joseph C; Wiseman, R Luke (2015) Regulating extracellular proteostasis capacity through the unfolded protein response. Prion 9:10-21
Chen, John J; Genereux, Joseph C; Wiseman, R Luke (2015) Endoplasmic reticulum quality control and systemic amyloid disease: Impacting protein stability from the inside out. IUBMB Life 67:404-13
Chen, John J; Genereux, Joseph C; Qu, Song et al. (2014) ATF6 activation reduces the secretion and extracellular aggregation of destabilized variants of an amyloidogenic protein. Chem Biol 21:1564-74
Zhang, Xin; Liu, Yu; Genereux, Joseph C et al. (2014) Heat-shock response transcriptional program enables high-yield and high-quality recombinant protein production in Escherichia coli. ACS Chem Biol 9:1945-9
Ryno, Lisa M; Genereux, Joseph C; Naito, Tadasuke et al. (2014) Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem Biol 9:1273-83
Suh, Eul Hyun; Liu, Yu; Connelly, Stephen et al. (2013) Stilbene vinyl sulfonamides as fluorogenic sensors of and traceless covalent kinetic stabilizers of transthyretin that prevent amyloidogenesis. J Am Chem Soc 135:17869-80
Shoulders, Matthew D; Ryno, Lisa M; Genereux, Joseph C et al. (2013) Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep 3:1279-92