This proposal will address the following specific aims: (1) Determine the role(s) of central GRK5 in the regulation of AT1R (Angiotensin II type 1 Receptor) expression under normal conditions and during Chronic Heart Failure (CHF). (2) Identify the mechanism(s) of modulation of central AT1R and GRK5 following Exercise Training (ExT) in CHF animals. (3) Determine the role of cytosolic and nuclear GRK5 in the transcriptional regulation of AT1R by I?B? and NF-?B.
In Specific Aim 1 we will induce CHF by coronary artery ligation. Overexpression of GRK5 will be targeted to the RVLM or PVN by lentiviral injection. To determine the effects of GRK5 knockdown on AT1R expression and changes in sympatho-excitation, we will utilize both commercially available GRK5 KO mice and lentiviral packaged siRNA against GRK5 that will be injected into the RVLM or PVN. Urinary excretion of norepinephrine (NE), plasma NE and Ang II will be measured in all animal groups. Arterial pressure and heart rate will be continuously recorded in order to derive additional indices of sympatho-excitation and to determine arterial baroreflex function. Sympathetic nerve activity will be directly recorded under anesthesia in terminal experiments. In all animals cardiac function will be evaluated serially by high-frequency echocardiography.
In Specific Aim 2, we will induce CHF in GRK5KO mice that are either sedentary or ExT as well as utilize CHF rats in which GRK5 has been silenced in the PVN or RVLM using siRNA lentivirus. Following ExT, sympathetic and baroreflex function will be evaluated in a similar fashion as in Specific Aim 1. We will test Specific Aim 3 in CATH.a neurons, utilizing both overexpression and silencing techniques with a GRK5 plasmid and siRNA to examine the subcellular localization of AT1R, I?B?, NF-?B, and GRK5 following Ang II stimulation. We will also perform parallel studies using a K215R dominant negative GRK5 construct to determine if the GRK5/AT1R/I?B?/NF-?B interaction is kinase-dependent.

Public Health Relevance

Chronic Heart Failure (CHF) is one of the leading causes of death in the United States (600,000 new diagnoses each year), and is characterized in part by increased sympathetic nerve activity mediated in part by upregulation of the Angiotensin II type 1 Receptor (AT1R). Exercise training is an accepted therapy in patients with CHF and can increase survival, decrease complications, and abrogate increases in muscle sympathetic nerve activity. Gaining a greater understanding of the regulation of AT1R both during CHF and following ExT may lead to development of therapeutics and more effective treatment of this disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32HL116172-03
Application #
8683233
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Meadows, Tawanna
Project Start
2012-07-01
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Nebraska Medical Center
Department
Physiology
Type
Schools of Medicine
DUNS #
City
Omaha
State
NE
Country
United States
Zip Code
68198
Pellegrino, Peter R; Schiller, Alicia M; Haack, Karla K V et al. (2016) Central Angiotensin-II Increases Blood Pressure and Sympathetic Outflow via Rho Kinase Activation in Conscious Rabbits. Hypertension 68:1271-1280
Haack, Karla K V; Zucker, Irving H (2015) Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure. Auton Neurosci 188:44-50
Zucker, Irving H; Schultz, Harold D; Patel, Kaushik P et al. (2015) Modulation of angiotensin II signaling following exercise training in heart failure. Am J Physiol Heart Circ Physiol 308:H781-91
Zucker, Irving H; Xiao, Liang; Haack, Karla K V (2014) The central renin-angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci (Lond) 126:695-706
Haack, Karla K V; Marcus, Noah J; Del Rio, Rodrigo et al. (2014) Simvastatin treatment attenuates increased respiratory variability and apnea/hypopnea index in rats with chronic heart failure. Hypertension 63:1041-9
Haack, Karla K V; Gao, Lie; Schiller, Alicia M et al. (2013) Central Rho kinase inhibition restores baroreflex sensitivity and angiotensin II type 1 receptor protein imbalance in conscious rabbits with chronic heart failure. Hypertension 61:723-9
Xiao, Liang; Haack, Karla K V; Zucker, Irving H (2013) Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol 304:C1073-9
Haack, Karla K V; Engler, Christopher W; Papoutsi, Evlampia et al. (2012) Parallel changes in neuronal AT1R and GRK5 expression following exercise training in heart failure. Hypertension 60:354-61