Inflammation plays a critical role in secondary damage after spinal cord injury (SCI). Currently, there is no widely accepted, FDA approved, therapeutic for mitigating inflammation following SCI. L-selectin is an adhesion receptor that facilitates recruitment of leukocytes into sites of inflammation. Preliminary data in the Noble-Haeusslein lab show improved sparing and long-term recovery after SCI in L-selectin knockout or wild- type mice treated with diclofenac acid (DFA), a non-steroidal anti-inflammatory drug (NSAID) that induces L- selectin shedding via cleavage at the membrane proximal domain. DFA was effective when administered immediately and at 3 hours, but not at 8 hours, post-SCI. L-selectin, therefore, represents a potential therapeutic target to reduce secondary damage in the acutely injured spinal cord. However, the effect of L- selectin shedding on the recruitment of specific leukocyte subsets remains undefined. The hypothesis of this proposal is that L-selectin shedding, through cleavage at the membrane proximal domain, reduces the recruitment of pro-inflammatory subsets of leukocytes following SCI. The objectives are to determine the effect of L-selectin shedding on recruitment of specific leukocyte subsets, confirm that DFA achieves it beneficial effects via L-selectin shedding, and identify a new candidate therapeutic for future studies.
Specific Aim 1 will test the hypothesis that L-selectin shedding reduces infiltration of specific subsets of leukocytes into the acutely injured spinal cord. Flow cytometry will be performed up to 72 hours post-SCI in wild-type (WT) and L-selectin knockout (KO) mice treated with DFA or a vehicle control at 3 hours post-injury. In vivo imaging will be utilized to observe the behavior of immunolabeled leukocyte populations in vessels in the acutely injured spinal cord.
Specific Aim 2 will test the hypothesis that benefit of DFA is specific to shedding of L-selectin at the membrane proximal domain. Leukocyte infiltration will be quantified by flow cytometry up to 72 hours post-SCI in L(E)-Same mice that lack the cleavage site in the membrane proximal domain of L-selectin, rendering leukocytes resistant to L-selectin shedding. Long-term neurological recovery will be measured using the Basso Mouse Scale (BMS) and grid walk tests to determine if the effect of DFA is abolished in L(E)-Same mice.
Specific Aim 3 will test the hypothesis that N-phenylanthranalic acid, an NSAID with an improved safety profile compared to DFA, induces L-selectin shedding and improves long-term recovery after SCI. WT mice will be treated with N-phenylanthranalic acid at 3 hours post-SCI. L-selectin shedding will be quantified by flow cytometry and ELISA up to 72 hours post-injury. Leukocyte infiltration will be assessed using flow cytometry and long-term neurological recovery will be measured based on the BMS. The collective results will help uncover the role of L-selectin in recruitment of specific leukocyte populations after SCI and validate L- selectin shedding as a therapeutic strategy in the acutely injured spinal cord. The findings from this proposal may be applicable to other central nervous system disorders marked by damaging inflammation.

Public Health Relevance

Spinal cord injury is a severely debilitating event with limited effective treatment options for the patient beyond rehabilitation. The proposed research will examine the contribution of the adhesion receptor, L-selectin, to recruitment of leukocytes into the acutely injured spinal cord and subsequent long-term recovery. This work will define mechanisms underlying L-selectin-dependent leukocyte recruitment and validate a novel therapeutic strategy based on disrupting L-selectin function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32NS096883-03
Application #
9456820
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Jakeman, Lyn B
Project Start
2016-04-01
Project End
2019-03-31
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118