? Drug addiction has been characterized as a progressive alteration of the brain reward system. Using animals to model this progression, it is clear that each stage of addiction, from initial response to relapse, is strongly influenced by genetic contributions. The collection of genes that can potentially regulate this process is quite large, and it has become a central question of drug abuse research to identify the key molecular determinants for genetic susceptibility and therapeutic intervention. These genes can be identified by classical genetics, which has been a widely successful method to uncover key components of biological pathways and regulators of complex behaviors. As an unbiased approach it affords the opportunity to discover novel genes that might not be otherwise implicated in addiction. This proposal describes a genetic screen to identify genes that regulate dopamine neurotransmission. Because dopaminergic pathways are strongly implicated in reward mechanisms, these genes may also play a role in the process of addiction. The proposed approach is a genome-wide saturation mutagenesis effort and phenotypic screen that is tailored to select for dopamine-modulated behaviors. Saturation mutagenesis is achieved in the mouse with the alkylating agent ethylnitrosourea (ENU), which induces base pair mutations at high frequency. These mutations are then bred onto a genetic background of dopfamine transporter (DAT) deficiency. DAT knockout mice lack the ability to clear synaptic dopamine, which results in persistent hyperdopaminergia. The phenotypic screen is designed to find new mutations that enhance or suppress the behavioral phenotype of DAT knockout mice. It is likely that these modifier mutations will directly or indirectly influence dopamine transmission. The research plan has the following aims:
AIM I. To introduce random mutations onto DAT and -/- genetic backgrounds.
AIM II. To establish and implement a forward screen to find dominant modifiers of the DAT mutant phenotype.
AIM III. To determine the identity of novel DAT modifier mutations through chromosome positioning and candidate gene analysis.
AIM I V. To characterize the neurochemistry and behavioral pharmacology of mutant mouse lines, and determine the influence of the mutation on dopamine neurotransmission. The ultimate goal of the research plan is to isolate new alleles that enhance or impair dopamine signals, and determine whether these alleles play a role in addiction or could be targets for therapeutic treatments of human addictions. This research proposal has also been designed to further develop the scientific career of the P.I. in preparation for an independent faculty position using forward genetic approaches to dissect neurotransmitter signaling pathways and complex behaviors related to human disease states. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01DA017703-02
Application #
7211506
Study Section
Human Development Research Subcommittee (NIDA)
Program Officer
Satterlee, John S
Project Start
2006-04-01
Project End
2011-03-31
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
2
Fiscal Year
2007
Total Cost
$121,290
Indirect Cost
Name
Duke University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Ruddy, Rebecca M; Chen, Yuxiao; Milenkovic, Marija et al. (2015) Differential effects of NMDA receptor antagonism on spine density. Synapse 69:52-6
Siesser, William B; Sachs, Benjamin D; Ramsey, Amy J et al. (2013) Chronic SSRI treatment exacerbates serotonin deficiency in humanized Tph2 mutant mice. ACS Chem Neurosci 4:84-8
Ramsey, Amy J; Milenkovic, Marija; Oliveira, Ana F et al. (2011) Impaired NMDA receptor transmission alters striatal synapses and DISC1 protein in an age-dependent manner. Proc Natl Acad Sci U S A 108:5795-800
Dzirasa, Kafui; Ramsey, Amy J; Takahashi, Daniel Yasumasa et al. (2009) Hyperdopaminergia and NMDA receptor hypofunction disrupt neural phase signaling. J Neurosci 29:8215-24
Ghisi, Valentina; Ramsey, Amy J; Masri, Bernard et al. (2009) Reduced D2-mediated signaling activity and trans-synaptic upregulation of D1 and D2 dopamine receptors in mice overexpressing the dopamine transporter. Cell Signal 21:87-94
Ramsey, Amy J; Laakso, Aki; Cyr, Michel et al. (2008) Genetic NMDA receptor deficiency disrupts acute and chronic effects of cocaine but not amphetamine. Neuropsychopharmacology 33:2701-14
Salahpour, Ali; Ramsey, Amy J; Medvedev, Ivan O et al. (2008) Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter. Proc Natl Acad Sci U S A 105:4405-10