The current application describes the research background, career development plan and Institutional commitment pertinent to the scientific career of the applicant. As required by the K02 mechanism, the applicant has already independent research support (R01 AI087803;NIAID).
The aim i s to strengthen and enhance the applicant's research efforts by providing at least 75% protected research time and thereby improving opportunities for building a successful science career. The applicant's studies are focusing on a novel domain of gastro-intestinal enzymology related to celiac disease. Celiac disease is an auto-immune disorder in which a host anti-self response is triggered by gluten-derived peptides in genetically predisposed individuals. Symptoms can be mostly reversed upon adherence to a gluten-free diet. Currently this avoidance strategy is the only treatment option available to celiac patients. It requires a life-long commitment to the gluten-free regimen and represents a social as well as a financial burden to the patient. One of the promising new therapeutic avenues pursued for celiac disease is gluten degradation and detoxification with enzyme preparations. We have discovered that the oral microbiome is a novel and rich source of gluten-degrading enzymes. In the past year we have isolated characterized and speciated the gluten enzyme-producing microorganisms. The elucidation of natural resident bacteria degrading gluten in the upper gastro-intestinal tract opens new therapeutic opportunities to neutralize the deleterious effects of these proteins. The major research goals for the next five years are to (1) Determine microbial enzyme activities under mock- gastro/duodenal conditions;(2) To characterize, clone and recombinantly express the most promising enzyme candidates;(3) To assess gliadin detoxification by selected microbes and purified enzyme preparations in vitro in a T-cell proliferation assay and in vivo in a mouse model for celiac disease. In addition, future studies are planned to investigate the striking structural similarities between gliadins and salivary proline-rich proteins (PRPs), and to investigate if PRPs possess gluten-like properties in terms of their capability to enhance/modulate immune responses in diet-responsive and refractory celiac disease.

Public Health Relevance

Gluten are proteins which are not tolerated by people who suffer from celiac disease. A promising therapeutic approach is the use of enzymes as dietary supplements to achieve gluten degradation and detoxification in vivo. The current application seeks to identify novel gluten-degrading enzymes expressed by resident microbes of the human upper gastrointestinal tract for their exploitation in the treatment of celiac disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Scientist Development Award - Research (K02)
Project #
1K02AI101067-01A1
Application #
8509426
Study Section
Allergy & Clinical Immunology-1 (AITC)
Program Officer
Prograis, Lawrence J
Project Start
2013-06-15
Project End
2018-05-31
Budget Start
2013-06-15
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$101,898
Indirect Cost
$7,548
Name
Boston University
Department
Dentistry
Type
Schools of Dentistry
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Heller, D; Helmerhorst, E J; Gower, A C et al. (2016) Microbial Diversity in the Early In Vivo-Formed Dental Biofilm. Appl Environ Microbiol 82:1881-8
Wei, Guoxian; Tian, Na; Valery, Adriana C et al. (2015) Identification of Pseudolysin (lasB) as an Aciduric Gluten-Degrading Enzyme with High Therapeutic Potential for Celiac Disease. Am J Gastroenterol 110:899-908
Tian, Na; Leffler, Daniel A; Kelly, Ciaran P et al. (2015) Despite sequence homologies to gluten, salivary proline-rich proteins do not elicit immune responses central to the pathogenesis of celiac disease. Am J Physiol Gastrointest Liver Physiol 309:G910-7
Tian, Na; Messana, Irene; Leffler, Daniel A et al. (2015) Salivary proline-rich proteins and gluten: Do structural similarities suggest a role in celiac disease? Proteomics Clin Appl 9:953-64
Trindade, Fábio; Oppenheim, Frank G; Helmerhorst, Eva J et al. (2014) Uncovering the molecular networks in periodontitis. Proteomics Clin Appl 8:748-61
Iavarone, Federica; D'Alessandro, Alfredo; Tian, Na et al. (2014) High-resolution high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry characterization of a new isoform of human salivary acidic proline-rich proteins named Roma-Boston Ser₂₂ (Phos) → Phe J Sep Sci 37:1896-902
Helmerhorst, Eva J; Wei, Guoxian (2014) Experimental Strategy to Discover Microbes with Gluten-degrading Enzyme Activities. Proc SPIE Int Soc Opt Eng 9112:
Tian, Na; Wei, Guoxian; Schuppan, Detlef et al. (2014) Effect of Rothia mucilaginosa enzymes on gliadin (gluten) structure, deamidation, and immunogenic epitopes relevant to celiac disease. Am J Physiol Gastrointest Liver Physiol 307:G769-76
Vukosavljevic, D; Hutter, J L; Helmerhorst, E J et al. (2014) Nanoscale adhesion forces between enamel pellicle proteins and hydroxyapatite. J Dent Res 93:514-9
Thomadaki, K; Bosch, Ja; Oppenheim, Fg et al. (2013) The diagnostic potential of salivary protease activities in periodontal health and disease. Oral Dis 19:781-8

Showing the most recent 10 out of 11 publications