Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) regulates sarcomeric structure, as well as myocardial contractility, and confers cardioprotection. My long-term goal is to define the role(s) of cMyBP-C phosphorylation in contractile function in order to understand the molecular mechanisms that underlie cardioprotection. We recently showed that (1) cMyBP-C is an easily releasable and soluble myofilament, (2) dephosphorylation of cMyBP-C results in its degradation and (3) release into the blood post-myocardial infarction (MI) and (4) its N'-fragments appear within 30 minutes of ischemia-reperfusion injury. In addition, we showed that plasma cMyBP-C levels are significantly increased in animal models and patients with MI. Strikingly, the level of plasma cMyBP-C is significantly higher than the gold standard plasma cardiac troponin I (2.0-fold molar). However, verification and validation of the precise amount of plasma cMyBP-C is the next critical step. Therefore, using selective and specific proteomic approaches, the short-term goal is to develop an assay that precisely quantitates the levels of plasma cMyBP-C. My central hypothesis is that cMyBP-C is a bone fide early, selective and measurable cardiac-specific biomarker, which appears within 30 minutes of ischemia. Thus, the overall objectives of the proposal are as follows: determine a cMyBP-C-specific amino acid region in order to develop a selective proteomics-based assay using the liquid chromatography-tandem-mass spectrometry (LC-MS-MS) and selective reaction monitoring (SRM) approaches (Specific Aim 1);verify the accuracy of the SRM approach for quantifying plasma cMyBP-C levels in both animal and human plasma samples (Specific Aim 2);and cross-validate the SRM assay with the conventional sandwich ELISA assay (Specific Aim 3). Plasma samples taken from ischemia- reperfusion-injured mice and patients with MI will be used in these analyses, compared to naive and sham operated mice and normal healthy controls. Validating the proteomic approaches will result in an assay that can accurately measure the level of cMyBP-C in the circulatory system, as well as define its presence as an early-released, cardiac-specific and selective marker of early-onset MI.

Public Health Relevance

This proposal aims to confirm the efficacy of cardiac binding protein-C (cMyBP-C), a sarcomeric cardiac- specific thick filament assembly protein, as an early circulatory biomarker for myocardial infarction. Specifically, the proposed studies will verify and validate cMyBP-C plasma levels through advanced proteomic approaches, leading to the development of diagnostic assays that advance cardiac care.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Scientist Development Award - Research (K02)
Project #
1K02HL114749-01
Application #
8352638
Study Section
Special Emphasis Panel (ZHL1-CSR-K (M2))
Program Officer
Carlson, Drew E
Project Start
2012-08-01
Project End
2017-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
1
Fiscal Year
2012
Total Cost
$91,701
Indirect Cost
$6,793
Name
Loyola University Chicago
Department
Physiology
Type
Schools of Medicine
DUNS #
791277940
City
Maywood
State
IL
Country
United States
Zip Code
60153
Viswanathan, Shiv Kumar; Sanders, Heather K; McNamara, James W et al. (2017) Hypertrophic cardiomyopathy clinical phenotype is independent of gene mutation and mutation dosage. PLoS One 12:e0187948
Sadayappan, Sakthivel (2017) The Myofilament Field Revisited in the Age of Cellular and Molecular Biology. Circ Res 121:601-603
Sadayappan, Sakthivel (2017) Cardiovascular Early Careers: Past and Present. Circ Res 121:100-102
Lynch 4th, Thomas L; Ismahil, Mohamed Ameen; Jegga, Anil G et al. (2017) Cardiac inflammation in genetic dilated cardiomyopathy caused by MYBPC3 mutation. J Mol Cell Cardiol 102:83-93
Lynch 4th, Thomas L; Kuster, Diederik W D; Gonzalez, Beverly et al. (2017) Cardiac Myosin Binding Protein-C Autoantibodies are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome. JACC Basic Transl Sci 2:122-131
Barefield, David Y; Lynch 4th, Thomas L; Jagadeesan, Aravindakshan et al. (2016) High-Throughput Diagnostic Assay for a Highly Prevalent Cardiomyopathy-Associated MYBPC3 Variant. J Mol Biomark Diagn 7:
Lipps, Christoph; Nguyen, Jenine H; Pyttel, Lukas et al. (2016) N-terminal fragment of cardiac myosin binding protein-C triggers pro-inflammatory responses in vitro. J Mol Cell Cardiol 99:47-56
Stathopoulou, Konstantina; Wittig, Ilka; Heidler, Juliana et al. (2016) S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure. FASEB J 30:1849-64
Kraker, Jessica; Viswanathan, Shiv Kumar; Knöll, Ralph et al. (2016) Recent Advances in the Molecular Genetics of Familial Hypertrophic Cardiomyopathy in South Asian Descendants. Front Physiol 7:499
Taylor, Erik N; Hoffman, Matthew P; Barefield, David Y et al. (2016) Alterations in Multi-Scale Cardiac Architecture in Association With Phosphorylation of Myosin Binding Protein-C. J Am Heart Assoc 5:e002836

Showing the most recent 10 out of 36 publications