This proposal describes a 5 year training program for the candidate's development as a Physician-Scientist and successful Independent Investigator. The candidate has completed Residency training in Radiation Oncology at the University of Pennsylvania and has passed his Radiation Oncology Board-Certification exams. He will now expand his scientific skills through a customized integration of institutional resources and mentored experiences. The candidate has a background in cell and molecular biology, but will greatly benefit from additional training in radiation biology, radiation oncology, molecular imaging, high-throughput screening, and experimental therapeutics. The University of Pennsylvania and the Department of Radiation Oncology have committed to fully support the proposed career development program and provide an ideal setting for training Physician-Scientists by acquiring and maintaining outstanding resources and nurturing a collaborative environment. Such an environment maximizes the potential for the candidate to construct a successful independently-funded academic career. The project described therefore takes advantage of the exceptional resources available at the Abramson Cancer Center and the University of Pennsylvania. Co-leaders of the Abramson Cancer Center's Radiation Biology &Imaging Program, Dr. Constantinos Koumenis, Associate Professor of Radiation Oncology and Dr. Stephen M. Hahn, Henry K. Pancoast Professor and Chair of Radiation Oncology will mentor the candidate's scientific and career development. Together, Drs. Koumenis and Hahn have formalized a research plan with a career development strategy augmented by a strong formal program that includes regular lab meetings, seminars, journal clubs and didactic training as well as a process of regularly scheduled review to ensure progress. The proposed research will focus on delivering molecular targeted therapy for Glioblastoma Multiforme (GBM) via the novel strategic integration of ER stress and the extrinsic pathway of apoptosis. Despite the recently demonstrated efficacy of temozolomide (Temodar) in treating glioblastoma multiforme (GBM), it remains an incurable and devastating disease. New therapeutic approaches are desperately needed. The candidate has identified a novel mechanistic model of therapy that integrates the ER stress and death receptor pathways in human GBM cells to induce apoptosis. Effective pre-clinical validation of this integrated therapeutic strategy could serve as a model for development of ER stress/apoptosis-based targeted therapy against cancer in general. This project aligns well with the immediate career goal of applying mechanistic and high-throughput screening approaches to identify novel targets for cancer therapy, and the long-term career goal of translating these findings into effective targeted therapy for high-grade brain tumors. The mentorship of Drs. Constantinos Koumenis and Stephen Hahn, the unique resources and collaborative nature of the Abramson Cancer Center/University of Pennsylvania, and the translational clinical activities in the Roberts Proton Therapy Center/Perelman Center for Advanced Medicine/Translational Research Center together provide an exceptional environment to support the successful execution of the research project and the career development of the candidate. Furthermore, the program incorporates unique external scientific resources and expertise from the Wistar Institute and Johns Hopkins University to enhance the candidate's research and career development. Through the completion of the program described, the candidate will proceed to full independence with the expectation of successful achievement of R01 funding within five years.

Public Health Relevance

Glioblastoma Multiforme is the most common primary brain cancer in adults and is a lethal and devastating tumor. This research focuses on developing and testing an innovative strategy to molecularly integrate two biological pathways leading to cell death. Results of these studies will ultimately benefit public health by potentially improving therapies against these tumors and cancer in general.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Clinical Investigator Award (CIA) (K08)
Project #
5K08NS076548-02
Application #
8337790
Study Section
NST-2 Subcommittee (NST)
Program Officer
Fountain, Jane W
Project Start
2011-09-30
Project End
2016-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
2
Fiscal Year
2012
Total Cost
$189,227
Indirect Cost
$14,017
Name
University of Pennsylvania
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Macarthur, Kelly M; Kao, Gary D; Chandrasekaran, Sanjay et al. (2014) Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res 74:2152-9
Ojerholm, Eric; Lee, John Y K; Kolker, James et al. (2014) Gamma Knife radiosurgery to four or more brain metastases in patients without prior intracranial radiation or surgery. Cancer Med 3:565-71
Ju, Melody; Kao, Gary D; Steinmetz, David et al. (2014) Application of a telomerase-based circulating tumor cell (CTC) assay in bladder cancer patients receiving postoperative radiation therapy: a case study. Cancer Biol Ther 15:683-7
Alonso-Basanta, Michelle; Fang, Penny; Maity, Amit et al. (2014) A phase I study of nelfinavir concurrent with temozolomide and radiotherapy in patients with glioblastoma multiforme. J Neurooncol 116:365-72
Yang, Wensheng; Cooke, Mariana; Duckett, Colin S et al. (2014) Distinctive effects of the cellular inhibitor of apoptosis protein c-IAP2 through stabilization by XIAP in glioblastoma multiforme cells. Cell Cycle 13:992-1005
Al Zaki, Ajlan; Joh, Daniel; Cheng, Zhiliang et al. (2014) Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 8:104-12
Baumann, Brian C; Kao, Gary D; Mahmud, Abdullah et al. (2013) Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 4:64-79
Chandrasekaran, Sanjay; Hollander, Andrew; Xu, Xiangsheng et al. (2013) 18F-fluorothymidine-pet imaging of glioblastoma multiforme: effects of radiation therapy on radiotracer uptake and molecular biomarker patterns. ScientificWorldJournal 2013:796029
Joh, Daniel Y; Sun, Lova; Stangl, Melissa et al. (2013) Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One 8:e62425