Anoxia (lack of oxygen) followed by reoxygenation causes severe detrimental effects in a wide variety of medical conditions, including ischemic reperfusion injury and myocardial infarction. How animals sense anoxia- reoxygenation and prevent tissue injury are fundamental and unanswered issues. The transcription factor hypoxia inducible factor (HIF) is a key cell protector against anoxia-reoxygenation (A/R)-induced injury. The discovery of the C. elegans gene egl-9, which encodes an O2-sensing prolyl hydroxylase of HIF-1, has led to the identification of an evolutionarily conserved pathway central for maintaining O2 homeostasis in organisms from nematodes to humans. Inhibition of mammalian HIF hydroxylase homologs of EGL-9 strongly protects from myocardial ischemia and reperfusion injury. Using automated behavioral tracking under conditions of changing O2 concentrations, I discovered a locomotary behavior called the O2-ON response and have shown that the O2-ON response can model key aspects of mammalian tissue response to ischemia-reperfusion injury. EGL-9 is essential for the O2-ON response and mediates the effect of hypoxic preconditioning on the suppression of the O2-ON response. From a series of genetic screens, I discovered CYSL-1 as a new regulator of EGL-9 and a Cytochrome P450 enzyme that generates eicosanoid signaling molecules downstream of EGL-9 to control the O2-ON response. I also isolated C. elegans mutants that define additional novel regulators and targets of the EGL-9/HIF-1 pathway. The overall goal of this project is to clone the genes defined by these mutants and identify the novel conserved regulators of biological responses to A/R, which is modulated by the EGL-9 pathway, and determine the underlying molecular and cellular mechanisms. In the K99 phase of this project, I will establish and characterize C. elegans behavioral and cellular models for ischemia-reperfusion injury. In the R00 phase of this project, I will further determine the key mechanisms by which A/R causes the O2-ON response and identify novel conserved regulators and targets of the EGL-9 pathway, which mediates protection from A/R-induced cellular injury and behavioral response to A/R. Using combined molecular, cellular and behavioral analyses together with powerful genetic screens, I will systematically dissect the genetic pathways and define the fundamental mechanisms that regulate cellular and animal responses to A/R. With the support of and training opportunities provided by K99/R00, I plan to expand my current experimental and intellectual skills and develop expertise in areas of O2-related biology and diseases, which is vital to my career goal of directing an independent and successful research laboratory.

Public Health Relevance

(relevance of this research to public health): Ischemic heart disease is the most common cause of adult death in the United States and in most industrialized countries around the world;ischemia-reperfusion injury remains a leading cause of organ failure associated with high morbidity and mortality. Using a novel C. elegans behavioral model of ischemia- reperfusion injury, these proposed studies should reveal fundamental conserved mechanisms of cellular responses to anoxia-reoxygenation and the molecular basis of how animal behaviors are regulated by O2 availability, as well as identify potential new therapeutic targets to help treat human disorders that involve anoxia-reoxygenation, such as ischemic reperfusion injury and myocardial infarction.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Career Transition Award (K99)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Carlson, Drew E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Schools of Arts and Sciences
United States
Zip Code
Ma, Dengke K; Li, Zhijie; Lu, Alice Y et al. (2015) Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell 161:1152-1163