We are addressing the question of whether age-associated oncogenesis, and more specifically, tumor progression, is associated with mitochondrial (mt) ROS. We hypothesize that age-associated cancers are driven by increasing levels of mitochondrial-mediated ROS. Our preliminary data suggests that ROS is associated with tumor progression, and provides the rationale for three specific aims to better understand the mechanisms whereby protection of mitochondria reduces oncogenesis.
Aim 1 is designed to determine what cellular processes are involved in the mCAT suppression of metastatic tumor progression in the lungs of young and old mice, primary skin tumor progression in young and old mice. We will use primary skin tumor and pulmonary metastatic mammary tumor models in the presence and absence of mitochondrial-targeted catalase (mCAT) to analyze neoplastic progression and tumor metastasis. We will compare the host response and the protective effects of mCAT in young and old mice.
Aim 2 is designed to determine the contribution of specific cell types in the mCAT suppression of tumor progression. There is increasing evidence that the microenvironment plays a critical role in oncogeneis. Our preliminary results showing attenuation of tumor progression via expression of mCAT could be explained, in part, by mCAT expression within specific cell types within the microenvironment of the neoplastic cells. We will therefore assess the roles of mCAT expression in several different stromal cell types and compare their putative suppressive effects with epithelial cells (both neoplastic and non-neoplastic) that express mCAT. Specific mCAT expression will be driven by cell-specific Cre transgenesis.
Aim 3 is designed to evaluate the efficacy of mitochondrial antioxidant and protective drugs for intervention in tumor progression and metastasis. We will correlate the differences in modes of action of the drugs with differences in effects on tumor progression, cell proliferation and survival in order to better understand the mechanisms whereby protection of mitochondria reduces neoplasia and enhances an anti-aging phenotype. The experimental approach is designed to determine if specific mitochondrial targeted antioxidant mimetic are effective in suppressing tumor progression in young and old animals with cancer or in aged wild type mice that develop multiple tumor types.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
United States
Zip Code
Shen, Jiang-Cheng; Fox, Edward J; Ahn, Eun Hyun et al. (2014) A rapid assay for measuring nucleotide excision repair by oligonucleotide retrieval. Sci Rep 4:4894
Kamath-Loeb, Ashwini S; Balakrishna, Sharath; Whittington, Dale et al. (2014) Sphingosine, a modulator of human translesion DNA polymerase activity. J Biol Chem 289:21663-72
Wang, Ying; Wang, Gary Z; Rabinovitch, Peter S et al. (2014) Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-*B-mediated inflammation in macrophages. Circ Res 114:421-33
Szeto, H H; Birk, A V (2014) Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther 96:672-83
Dai, Dao-Fu; Karunadharma, Pabalu P; Chiao, Ying A et al. (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13:529-39
Goh, Jorming; Endicott, Emma; Ladiges, Warren C (2014) Pre-tumor exercise decreases breast cancer in old mice in a distance-dependent manner. Am J Cancer Res 4:378-84
Marcinek, D J; Conley, K E (2014) In vivo metabolic spectroscopy identifies deficits in mitochondrial quality and capacity in aging skeletal muscle. Clin Pharmacol Ther 96:669-71
Dai, Dao-Fu; Chiao, Ying Ann; Marcinek, David J et al. (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6
Bartell, Shoshana M; Kim, Ha-Neui; Ambrogini, Elena et al. (2014) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 5:3773
Herr, Alan J; Kennedy, Scott R; Knowels, Gary M et al. (2014) DNA replication error-induced extinction of diploid yeast. Genetics 196:677-91

Showing the most recent 10 out of 255 publications