There is accumulating evidence that early stage Alzheimer's disease reflects a breakdown in attentional control systems that likely contribute to the changes in memory performance, along with other aspects of cognitive performance. Recent evidence indicates that tasks that place a maximum load on attentional systems are particularly useful in serving as a behavioral biomarker both in discriminating healthy aging from early stage DAT, and are correlated with other biomarkers in non-demented older adults. The proposed research plan will continue to longitudinally follow a set of healthy older adults and individuals in the early stages of the disease process, along with individuals who are at risk due to stroke, to better isolate the contributions of novel attentional control measures, and to investigate the extent to which these individuals respond to memory/attention training techniques. We will have three waves of testing, which will be separated by approximately 1.5 years. Each participant will be tested in a single session for each wave of testing, lasting approximately 2 hours. During each wave, we will continue to administer a small battery (no more than 40 minutes) of executive measures (computation span, Stroop, a retroactive interference exclusion measure, and a short switching task). This will afford the ability to continue to follow these individuals with the same set of measures for which we already have data. In addition to the executive control measures, we will also use experimental procedures to provide estimates of three different targeted components in each wave. These will include measures of (a) controlled and automatic processing via the processing dissociation procedure, (b) components of prospective memory performance, and (c) standard mnemonic manipulations (i.e., repeated testing, expanded retrieval, semantic encoding). We will continue to explore distinct measures of participant variability and the components of reaction time distributions that lead to any change in the observed variability estimates as a potential marker for cognitive changes in healthy aging and early stage DAT. In addition, because of recent evidence that certain personality traits (e.g., conscientiousness and neuroticism) predispose individuals for developing DAT, we will explore the modulatory role of personality characteristics in the cognitive markers, and susceptibility to mnemonic techniques. Moreover, we have recently found that personality characteristics are related to cognitive performance including variability estimates. Finally, the behavioral assays obtained in Project 3 will be correlated with the results from the biomarkers available from other projects and cores (e.g., CSF, PIB, genetics, and volumetric measures of targeted areas) to determine which composite measures afford the best behavioral biomarkers.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG003991-30
Application #
8425016
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
2014-12-31
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
30
Fiscal Year
2013
Total Cost
$134,171
Indirect Cost
$45,900
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W et al. (2016) Associations Between β-Amyloid Kinetics and the β-Amyloid Diurnal Pattern in the Central Nervous System. JAMA Neurol :
Esparza, Thomas J; Wildburger, Norelle C; Jiang, Hao et al. (2016) Soluble Amyloid-beta Aggregates from Human Alzheimer's Disease Brains. Sci Rep 6:38187
McKee, Ann C; Cairns, Nigel J; Dickson, Dennis W et al. (2016) The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 131:75-86
Reiman, Eric M; Langbaum, Jessica B; Tariot, Pierre N et al. (2016) CAP--advancing the evaluation of preclinical Alzheimer disease treatments. Nat Rev Neurol 12:56-61
Jin, Sheng Chih; Benitez, Bruno A; Deming, Yuetiva et al. (2016) Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease. Methods Mol Biol 1303:299-314
Hohman, Timothy J; Cooke-Bailey, Jessica N; Reitz, Christiane et al. (2016) Global and local ancestry in African-Americans: Implications for Alzheimer's disease risk. Alzheimers Dement 12:233-43
Van Schependom, Jeroen; Jain, Saurabh; Cambron, Melissa et al. (2016) Reliability of measuring regional callosal atrophy in neurodegenerative diseases. Neuroimage Clin 12:825-831
Hohman, Timothy J; Bush, William S; Jiang, Lan et al. (2016) Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging 38:141-50
Su, Yi; Rubin, Brian B; McConathy, Jonathan et al. (2016) Impact of MR-Based Attenuation Correction on Neurologic PET Studies. J Nucl Med 57:913-7
Ebbert, Mark T W; Boehme, Kevin L; Wadsworth, Mark E et al. (2016) Interaction between variants in CLU and MS4A4E modulates Alzheimer's disease risk. Alzheimers Dement 12:121-9

Showing the most recent 10 out of 756 publications