Osteoarthritis (OA) is the most prevalent joint disease. Therapies for established and measures to prevent OA are not available. While aging is a major OA risk factor, mechanisms of joint and cartilage aging remain to be characterized. Our overall hypothesis proposes that cartilage aging is associated with failure of cellular homeostasis mechanisms, causing cell dysfunction and death. This initially affects the superficial zone and triggers the cartilage remodeling and degradation process characteristic of OA. The overall goal of this program is to begin with phenotype identification, proceed to elucidation of mechanisms and key cellular and molecular abnormalities in order to provide new directions for correction of aging-associated risk factors for OA and therapeutic interventions for established OA. In this proposal we focus on the identification of early changes in cellular and joint homeostasis mechanisms upon which OA is triggered or accelerated in response to biomechanical or biochemical stressors. This competing renewal continues to utilize human knee joints from donors across the adult age spectrum to establish phenotypic changes in articular cartilage and other joint tissues that are characteristic of normal joint aging and may predispose to OA development. Access to human tissues provides a unique opportunity to test the human and clinical relevance of novel basic and molecular mechanisms not only through correlative studies but also through an array of mechanistic studies with cells isolated from human tissues. These studies will be complemented with mutant mouse models. The proposed program will continue the existing cores (A: Administration;PI M. Lotz;B: Tissue Acquisition, Morphology, and Cell Culture;PI D. D'Lima). The following 3 projects are proposed: Project 1 'Autophagy in Aging and Osteoarthritis'(PI M. Lotz) will characterize patterns and consequences of defective and pharmacologically enhanced autophagy in joint aging and OA;Project 2 'The Chondrocyte Unfolded Protein Response (UPR) in Aging and Osteoarthritis'(PI R. Terkeltaub) addresses mechanisms and consequences of impaired UPR in regards to chondrocyte survival and hypertrophy;and Project 3 'Mechanobiology of Human Articular Cartilage Degeneration: Aging and Osteoarthritis'(PI R. Sah) will analyze biomechanical mechanisms of early and advanced cartilage degeneration and determine consequences for chondrocyte function and survival.

Public Health Relevance

Results from the proposed studies will add important new information on the earliest changes in joint aging focusing on decompensation of homeostasis mechanisms which may lead to cell death, abnormal cartilage cell activation and differentiation, ultimately resulting in cartilage destruction. This new insight into mechanisms of pathogenesis has the potential to lead to the discovery of new biomarkers and therapeutic targets. REVIEW OF INDIVIDUAL COMPONENTS OF THE PROGRAM PROJECT CORE A: ADMINISTRATION CORE;Dr. Martin K. Lotz, Core Leader (CL) DESCRIPTION (provided by applicant): The central theme of this program is to study aging of the human knee joint and its relationship to osteoarthritis (OA). The Administrative Core will focus efforts of the cores and projects on this theme, advance hypotheses and research directions and ascertain scientific progress. The core will provide administrative support for the most efficient utilization of resources. The core will maintain access to different sources of knee joints and cartilage and monitor sample processing by the cores and analysis by the projects. Core A also serves as the central unit for data management and maintains the database for all knee specimens that are studied in the program. The Specific Aims of the Administrative Core are: Aim 1. Monitor scientific progress in the individual projects. Aim 2. Promote interactions among the investigators in the program. Aim 3. Support young scientists and development of new projects. Aim 4. Provide access to knees and cartilage samples. Aim 5. Maintain central database. Aim 6. Perform statistical analysis. Aim 7. Coordinate all fiscal activities of the program. Aim 8. Ascertain responsible conduct of research. Aim 9. Enforce safety measures for work with hazardous materials. Aim 10. Distribute tissues and tissue extracts to outside investigators.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-9 (04))
Program Officer
Williams, John
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Terkeltaub, Robert (2014) Apolipoprotein a-I at the interface of vascular inflammation and arthritis. Arterioscler Thromb Vasc Biol 34:474-6
Zhao, Xianling; Petursson, Freyr; Viollet, Benoit et al. (2014) Peroxisome proliferator-activated receptor ? coactivator 1? and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis Rheumatol 66:3073-82
Alvarez-Garcia, Oscar; Rogers, Nicole H; Smith, Roy G et al. (2014) Palmitate has proapoptotic and proinflammatory effects on articular cartilage and synergizes with interleukin-1. Arthritis Rheumatol 66:1779-88
Kato, Tomohiro; Miyaki, Shigeru; Ishitobi, Hiroyuki et al. (2014) Exosomes from IL-1? stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther 16:R163
Grogan, Shawn P; Chen, Xian; Sovani, Sujata et al. (2014) Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A 20:264-74
Mologne, Timothy S; Cory, Esther; Hansen, Bradley C et al. (2014) Osteochondral allograft transplant to the medial femoral condyle using a medial or lateral femoral condyle allograft: is there a difference in graft sources? Am J Sports Med 42:2205-13
Onizuka, Naoko; Ito, Yoshiaki; Inagawa, Masayo et al. (2014) The Mohawk homeobox transcription factor regulates the differentiation of tendons and volar plates. J Orthop Sci 19:172-80
Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil et al. (2014) Creep of trabecular bone from the human proximal tibia. Mater Sci Eng C Mater Biol Appl 40:219-27
Shapiro, Irving M; Layfield, Robert; Lotz, Martin et al. (2014) Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 10:7-19
Olee, Tsaiwei; Grogan, Shawn P; Lotz, Martin K et al. (2014) Repair of cartilage defects in arthritic tissue with differentiated human embryonic stem cells. Tissue Eng Part A 20:683-92

Showing the most recent 10 out of 238 publications