Core B serves the overall function of procuring, processing and distributing human knee tissue and tissue extracts to the 3 research projects. The use of human tissues is a central and unifying part of the proposed experimental approach. Access to sufficient numbers of samples has been successfully maintained since the origin of this program. In the past cycle. Core B refined and standardized sample processing and analysis provided all projects with tissues, cells, and molecular extracts as needed. This service is a key feature and basis of this program. Core B also assumed an ancillary function to generate data for descriptive studies that will support hypothesis driven research. Core B will document the relevant parameters in articular cartilage and other joint tissues providing a multidisciplinary analysis of age-related changes in the knee. All projects can now study the same knee samples across the entire adult age spectrum. In addition to specific themes that are addressed by the 3 projects, the multidisciplinary analysis of the same human samples represents one of the central common approaches in the program.
The Specific Aims are to procure human knee joints (100 donors, 200 joints per year) from tissue banks;conduct macroscopic assessment;han/est specimens; perform microscopic assessment including semiquantitative and quantitative histology and histomorphometric measurements;isolate cells (chondrocytes, meniscal synovial, ligament cells);extract RNA, DNA, and protein;perform biomechanical testing;identify patterns of degeneration and determine relationships of changes in all joint tissues. In addition. Core B will store and distribute materials (tissue sections, DNA, RNA, proteins) nationally to other investigators. A major strength of this core is the analysis of the same tissue specimens in multiple experiments with different techniques to test different hypotheses This approach supports direct associations among the different observations and enhances the power of the observations. By performing a standardized evaluation of cartilage, and of all other joint tissues, changes that occur with aging can be identified and the relationship of changes in the different tissues can be determined. Comparison with similar specimens exhibiting OA presents a unique opportunity to define similarities and differences between the process of OA and that of aging. The studies proposed in all research components depend on these samples, and this core is thus essential to the success of the program.

Public Health Relevance

The objective of this program is to identify eariy mechanisms that lead to OA. The multimodal analysis of the entire knee is a unique opportunity to understand the process of OA and the difference from natural aging. This will lead to improved diagnostic and prognostic markers of OA and novel prophylactic and therapeutic approaches. Core B will process and store tissue sections and extracts to be distributed nationally to investigators which, when combined with the database of macroscopic, microscopic, and biomechanical measurements maintained by the core, will be a valuable contribution to the scientific community.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG007996-20
Application #
8459431
Study Section
Special Emphasis Panel (ZAG1-ZIJ-9)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
20
Fiscal Year
2013
Total Cost
$802,767
Indirect Cost
$379,143
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Wang, Yun; Viollet, Benoit; Terkeltaub, Robert et al. (2016) AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages. Ann Rheum Dis 75:286-94
Nakamichi, Ryo; Ito, Yoshiaki; Inui, Masafumi et al. (2016) Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun 7:12503
Alvarez-Garcia, O; Olmer, M; Akagi, R et al. (2016) Suppression of REDD1 in osteoarthritis cartilage, a novel mechanism for dysregulated mTOR signaling and defective autophagy. Osteoarthritis Cartilage 24:1639-47
Grogan, Shawn P; Pauli, Chantal; Lotz, Martin K et al. (2016) Relevance of meniscal cell regional phenotype to tissue engineering. Connect Tissue Res :
Temple-Wong, Michele M; Ren, Shuwen; Quach, Phu et al. (2016) Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthritis Res Ther 18:18
Yadav, Manisha C; Bottini, Massimo; Cory, Esther et al. (2016) Skeletal Mineralization Deficits and Impaired Biogenesis and Function of Chondrocyte-Derived Matrix Vesicles in Phospho1(-/-) and Phospho1/Pi t1 Double-Knockout Mice. J Bone Miner Res 31:1275-86
Shen, T; Alvarez-Garcia, O; Li, Y et al. (2016) Suppression of Sestrins in aging and osteoarthritic cartilage: dysfunction of an important stress defense mechanism. Osteoarthritis Cartilage :
Goodrich, Laurie R; Chen, Albert C; Werpy, Natasha M et al. (2016) Addition of Mesenchymal Stem Cells to Autologous Platelet-Enhanced Fibrin Scaffolds in Chondral Defects: Does It Enhance Repair? J Bone Joint Surg Am 98:23-34
Meinert, Christoph; Schrobback, Karsten; Levett, Peter A et al. (2016) Tailoring hydrogel surface properties to modulate cellular response to shear loading. Acta Biomater :
Alvarez-Garcia, Oscar; Fisch, Kathleen M; Wineinger, Nathan E et al. (2016) Increased DNA Methylation and Reduced Expression of Transcription Factors in Human Osteoarthritis Cartilage. Arthritis Rheumatol 68:1876-86

Showing the most recent 10 out of 289 publications