OA is clearly associated with cartilage aging, but aging does not inevitably cause OA. Here, we aim to identify eariy aging-related chondrocyte abnormalities that provide a foundation upon which OA is then triggered or accelerated. Fundamental means by which cells normally resolve stress include proteostasis responses such as the unfolded protein response (UPR), which restores equilibrium to the stressed ER via a reprogrammed proteome, rich in chaperones and protein folding catalysts. The UPR also regulates oxidative stress responses, inflammation, and cell fate (normally promoting autophagy, but promofing apoptosis when damaged proteins exceed ER folding capacity). Three UPR signaling/proteolytic cascades are triggered by dissociation of distinct ER membrane proteins from the chaperone GRP78, each culminating in CHOP expression that successfully resolves the UPR, restoring normal protein synthesis and potentially promoting autophagy as opposed to apoptosis. Experimental UPR "gain of function" and "loss of function" have triggered cartilage pathology. Furthermore, UPR impairment is linked with aging and degenerative diseases in multiple tissues. We observe impaired CHOP expression in aging and OA cartilages. Moreover, GRP78, which dampens the UPR and inhibits apoptosis, is deficient in early OA, whereas, CHOP and GRP78 are induced by biomechanical stress in normal chondrocytes. Our central hypothesis is that impairment of the UPR due to deficient CHOP and GRP78 in articular chondrocytes are eariy changes of aging cartilage that renders cartilage more susceptible to OA development and progression. We specifically aim to: (1) Test the hypothesis that baseline impairment of the CHOP and GRP78 expression, particularly in the superficial zone, is a fundamental change of aging in articular cartilage and linked with autophagy;(2) Test the hypothesis that impaired CHOP and GRP78 responses to biomechanical and oxidative stress in aging cartilage promotes matrix loss, apoptosis, and decreased autophagy;and (3) Test the hypothesis, in complementary studies of mice, that CHOP deficiency promotes superficial zone chondrocyte dysfunction, matrix loss, and decreased autophagy in vitro, and aging and instability-induced OA in vivo.

Public Health Relevance

OA is a major public health probem in aging. The eariiest changes of aging that predispose to OA are not well understood. There is no adequate disease-modifying therapy for OA. This project has the potential to uncover eariy changes in aging cartilage to provide novel sites for intervention to prevent and slow the disease in aging.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01AG007996-21
Application #
8663764
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
21
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Terkeltaub, Robert (2014) Apolipoprotein a-I at the interface of vascular inflammation and arthritis. Arterioscler Thromb Vasc Biol 34:474-6
Zhao, Xianling; Petursson, Freyr; Viollet, Benoit et al. (2014) Peroxisome proliferator-activated receptor ? coactivator 1? and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis Rheumatol 66:3073-82
Alvarez-Garcia, Oscar; Rogers, Nicole H; Smith, Roy G et al. (2014) Palmitate has proapoptotic and proinflammatory effects on articular cartilage and synergizes with interleukin-1. Arthritis Rheumatol 66:1779-88
Kato, Tomohiro; Miyaki, Shigeru; Ishitobi, Hiroyuki et al. (2014) Exosomes from IL-1? stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther 16:R163
Grogan, Shawn P; Chen, Xian; Sovani, Sujata et al. (2014) Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A 20:264-74
Mologne, Timothy S; Cory, Esther; Hansen, Bradley C et al. (2014) Osteochondral allograft transplant to the medial femoral condyle using a medial or lateral femoral condyle allograft: is there a difference in graft sources? Am J Sports Med 42:2205-13
Onizuka, Naoko; Ito, Yoshiaki; Inagawa, Masayo et al. (2014) The Mohawk homeobox transcription factor regulates the differentiation of tendons and volar plates. J Orthop Sci 19:172-80
Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil et al. (2014) Creep of trabecular bone from the human proximal tibia. Mater Sci Eng C Mater Biol Appl 40:219-27
Shapiro, Irving M; Layfield, Robert; Lotz, Martin et al. (2014) Boning up on autophagy: the role of autophagy in skeletal biology. Autophagy 10:7-19
Olee, Tsaiwei; Grogan, Shawn P; Lotz, Martin K et al. (2014) Repair of cartilage defects in arthritic tissue with differentiated human embryonic stem cells. Tissue Eng Part A 20:683-92

Showing the most recent 10 out of 238 publications