The purpose of the Bone Morphometry and Biomechanics Core is to consolidate key personnel and equipment in order to provide a centralized facility that will enhance collaborative and multidisciplinary investigations into the multiple mechanisms that increase bone fragility with age. Core C will perform six procedures in a cost and time efficient manner to facilitate the examination of the changes in bone cell number, architecture, mass, vascularity, and strength in murine models. 1. Undecalcified, plastic embedded, tetracycline labeled sections of vertebral cortical and cancellous bone and femoral diaphyseal cortical bone will be prepared and read histomorphometrically including measurements of the prevalence of osteoblast and osteocyte apoptosis, solute transport from the peripheral circulation to the lacunar-canalicular system as revealed by procion red epifluorescence, and proximity of vascular channels to the tetracycline labeled cancellous perimeter as revealed by the infusion of lead chromate. 2. Frozen sections of bone will be obtained to facilitate quantification of galactosidase activity, immunostaining of targeted cells in transgenic animals and recognition of green fluorescent protein. 3. Micro-CT measurements will be done at necropsy in excised lumbar vertebrae and femora to determine the individual volumetric densitometric contributions of cortical and cancellous bone as well as the 3-dimensional measurements of cortical and cancellous microarchitecture. In addition, the volume and suri'ace area of the vascular system will be measured usingmicro-CT imaging of decalcified bones after perfusion with lead chromate. 4. Bone mass will be determined by dual-energy x-ray absorptiometry. Measurements of the integral density of the global, spinal, and femoral subregions will be performed serially, in longitudinal experiments in live mice. 5. Vertebral compression strength and femoral three-point bending will be measured to determine the significance of the changes in BMD and bone architecture. 6. The Core will train and maintain the continuing education of a key laboratory person from each project to help perform the routine static and dynamic bone histomorphometry.

Public Health Relevance

This work should advance knowledge of how the elderiy develop fractures and ascertain the mechanisms underlying the greater and eariier loss of bone strength than bone mass. Furthermore, these investigations should provide a better understanding of the multiple causes, cortical and cancellous contributions, and optimal management of increased bone fragility that occurs with age.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arkansas for Medical Sciences
Little Rock
United States
Zip Code
Farr, Joshua N; Almeida, Maria (2018) The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res 33:1568-1584
Weinstein, Robert S; Hogan, Erin A; Borrelli, Michael J et al. (2017) The Pathophysiological Sequence of Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Male Mice. Endocrinology 158:3817-3831
Kim, Ha-Neui; Chang, Jianhui; Shao, Lijian et al. (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16:693-703
Ucer, Serra; Iyer, Srividhya; Kim, Ha-Neui et al. (2017) The Effects of Aging and Sex Steroid Deficiency on the Murine Skeleton Are Independent and Mechanistically Distinct. J Bone Miner Res 32:560-574
Iyer, Srividhya; Han, Li; Ambrogini, Elena et al. (2017) Deletion of FoxO1, 3, and 4 in Osteoblast Progenitors Attenuates the Loss of Cancellous Bone Mass in a Mouse Model of Type 1 Diabetes. J Bone Miner Res 32:60-69
Almeida, Maria; Laurent, Michaƫl R; Dubois, Vanessa et al. (2017) Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 97:135-187
Piemontese, Marilina; Almeida, Maria; Robling, Alexander G et al. (2017) Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2:
Piemontese, Marilina; Xiong, Jinhu; Fujiwara, Yuko et al. (2016) Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Am J Physiol Endocrinol Metab 311:E587-93
Fujiwara, Toshifumi; Ye, Shiqiao; Castro-Gomes, Thiago et al. (2016) PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis. JCI Insight 1:e86330
Fujiwara, T; Zhou, J; Ye, S et al. (2016) RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis 7:e2300

Showing the most recent 10 out of 162 publications