Frontotemporal lobar degeneration (FTLD) is the second most common cause of dementia after Alzheimer's disease (AD) in patients <65 years of age. Tau and TDP-43 pathology variants of FTLD (FTLD-Tau and FTLD-TDP, respectively) account for -90 of FTLD cases, but TDP-43 pathology occurs in >50% of patients with AD, Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Guam amyotrophic lateral sclerosis (ALS)/Parkinson Dementia Complex (ALS/PDC). Despite the fact that this neuropathology overlap is well known, it is unclear how comorbid Ap, tau and alpha-synuclein pathology modify TDP-43 mediated neurodegeneration in patients with frontotemporal dementia (FTD). Conversely, it is unknown how TDP-43 modifies Ap, tau and alpha-synuclein pathologies, but TDP-43 pathology is known to independently contribute to behavioral impairments in AD. Since these issues are tractable to investigate experimentally in transgenic (Tg) mouse models of TDP-43, tau, Ap and alpha-synuclein pathology. Project 4 tests the hypothesis that comorbid tau, Ap and alpha-synuclein pathologies in Tg mice independently modify TDP-43 mediated neurodegeneration and wee versa. This will be done by studying TDP-43 Tg mice which recapitulate the hallmark features of FTLD-TDP that we cross with our previously characterized mutant P301S tau Tg mice which show tau mediated neurodegeneration, behavioral impairments and premature death, Tg2576 Tg mice that model AD-like Ap pathology and our extensively studied M83 alpha-synuclien Tg mice that develop Lewy body pathology, motor impairments and lethal neurodegeneration. Implementing these Aims will elucidate how TDP-43 mediated neurodegenerative disease is modified by comorbid tau, Ap and alpha-synuclien pathologies and vice versa. These studies are highly significant because they will clarify mechanisms of TDP-43 proteinopathy and they have translational potential to improve both the diagnosis and the treatment of patients with TDP-43 proteinopathy.

Public Health Relevance

Project 4 tests the hypothesis that frontotemporal dementia (FTD) patients with co-incident Alzheimer's disease (AD) pathology (tau tangles, Ap plaques), or Parkinson's disease (PD) pathology (alpha-synuclein Lewy bodies) may have a different disease course and responses to therapies than those without these comorbid pathologies and vice versa. Although tau, Ap and alphasynuclein lesions often co-occur with TDP-43 pathologies in the same patient, these issues are difficult to address in patients but they are readily addressed in studies of transgenic (Tg) mouse models of TDP-43 mediated neurodegeneration that are/are not crossed with Tg mouse models of AD or PD pathologies. Thus, the relevance of Project 4 to human health is that it will elucidate how TDP-43 mediated neurodegeneration is modified by comorbid tau, Ap and alpha-synuclien pathologies and vice versa. These studies are highly significant because they will clarify mechanisms of TDP-43 proteinopathy and have translational potential to improve the diagnosis and treatment of patients with FTD, AD, PD and related disorders.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F et al. (2016) Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation. J Neurosci 36:3829-38
Makani, Vishruti; Zhang, Bin; Han, Heeoon et al. (2016) Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy. Acta Neuropathol Commun 4:106
Ash, Sharon; Ternes, Kylie; Bisbing, Teagan et al. (2016) Dissociation of quantifiers and object nouns in speech in focal neurodegenerative disease. Neuropsychologia 89:141-52
Santos-Santos, Miguel A; Mandelli, Maria Luisa; Binney, Richard J et al. (2016) Features of Patients With Nonfluent/Agrammatic Primary Progressive Aphasia With Underlying Progressive Supranuclear Palsy Pathology or Corticobasal Degeneration. JAMA Neurol 73:733-42
Cousins, Katheryn A Q; Ash, Sharon; Irwin, David J et al. (2016) Dissociable substrates underlie the production of abstract and concrete nouns. Brain Lang 165:45-54
Kovalevich, Jane; Cornec, Anne-Sophie; Yao, Yuemang et al. (2016) Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies. J Pharmacol Exp Ther 357:432-50
Vu, An T; Phillips, Jeffrey S; Kay, Kendrick et al. (2016) Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment. Cogn Neuropsychol 33:265-75
Shinagawa, Shunichiro; Catindig, Joseree Ann; Block, Nikolas R et al. (2016) When a Little Knowledge Can Be Dangerous: False-Positive Diagnosis of Behavioral Variant Frontotemporal Dementia among Community Clinicians. Dement Geriatr Cogn Disord 41:99-108
Spiller, Krista J; Restrepo, Clark R; Khan, Tahiyana et al. (2016) Progression of motor neuron disease is accelerated and the ability to recover is compromised with advanced age in rNLS8 mice. Acta Neuropathol Commun 4:105
McMillan, Corey T; Irwin, David J; Nasrallah, Ilya et al. (2016) Multimodal evaluation demonstrates in vivo (18)F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 132:935-937

Showing the most recent 10 out of 487 publications