The intracellular free Ca2+ concentration of CMS neurons is highly regulated. Small changes in the cytosolic Ca2+ concentration and different patterns of Ca2+ transients are used by CMS neurons to mediate important functional and developmental processes. Increases in the cytosolic Ca2+ concentration can arise from entry of extracellular Ca2+ through ion channels in the plasma membrane or via the release of Ca2+ from intracellular stores. Both entry of extracellular Ca2+ and release of Ca2* from intracellular stores are directly coupled to neuronal function. For the development of acute and chronic degenerative diseases reducing the viability and function of CNS neurons several studies indicate that both changes in intracellular second messenger concentration and pathological increases in the intracellular Ca2+ concentration promote pathogenesis. The present application will test the two-pronged hypothesis that Ca2+ signaling of CNS neurons is functionally regulated by associated proteins of intracellular Ca2+ channels and that control of their expression and function represents a novel target for CNS neuroprotection. The proposed experiments designed to test this hypothesis will investigate the functional mechanism underlying this interaction under experimentally induced disease conditions in models of acute and chronic degenerative CNS diseases.
The specific aims of this proposal are to determine a) changes in the expression and localization, b) function and c) modulation of these proteins based on therapeutic intervention studies in pre-clinical models of AD and age-related cognitive impairment. The overall goal of the study is to identify a novel mechanism of neuroprotection and determine its potential as a strategy for neuroprotective therapies targeting the aging brain and age-related neurodegenerative diseases such as Alzheimer's disease. This therapy approach will have the potential to be both preventative and therapeutic in nature and to complement existing treatment designs and rationales. Thus, potential new targets for treating those devastating conditions affecting the aging population may be identified.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Texas
Fort Worth
United States
Zip Code
Sun, Jiahong; Ren, Xuefang; Qi, Wen et al. (2016) Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'. J Ethnopharmacol 187:249-58
Engler-Chiurazzi, E B; Singh, M; Simpkins, J W (2016) From the 90's to now: A brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res 1633:96-100
Engler-Chiurazzi, E B; Brown, C M; Povroznik, J M et al. (2016) Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol :
Engler-Chiurazzi, Elizabeth B; Covey, Douglas F; Simpkins, James W (2016) A novel mechanism of non-feminizing estrogens in neuroprotection. Exp Gerontol :
Sarkar, S; Jun, S; Rellick, S et al. (2016) Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139-51
Richter, Frank; Koulen, Peter; Kaja, Simon (2016) N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release. Sci Rep 6:23481
Engler-Chiurazzi, Elizabeth B; Stapleton, Phoebe A; Stalnaker, Jessica J et al. (2016) Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition. J Toxicol Environ Health A 79:447-52
Sun, Fen; Nguyen, Trinh; Jin, Xin et al. (2016) Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk. Endocrinology 157:2067-79
Sun, Jiahong; Hu, Heng; Ren, Xuefang et al. (2016) Tert-butylhydroquinone compromises survival in murine experimental stroke. Neurotoxicol Teratol 54:15-21
Shetty, Ritu A; Rutledge, Margaret A; Forster, Michael J (2016) Retrograde conditioning of place preference and motor activity with cocaine in mice. Psychopharmacology (Berl) :

Showing the most recent 10 out of 162 publications