During the previous funding period, we made a number of fundamental observations relative to the mechanism of action of estrogens on mitochondria that guide the aims of the present proposal. We have evidence that the bioenergetic crisis seen during normal brain aging and in AD is caused by mitochondrial structure, function and mobility dysfunctions that leads to a breakdown in synaptic integrity resulting in cognitive decline that characterizes both aging and AD. The present continuation of this grant will further assess the mechanism(s) of effects of estrogens on mitochondria and determine if these effects occur in vivo and in post-mortem samples from women. We will address 4 specific aims.
Specific Aim 1 will determine if pharmacological antagonism or genetic reduction in the PKA/DRP1 pathway leads to a loss of synaptic integrity, mitochondrial fission and immobility, and bioenergetic decline in primary hippocamal neurons.
Specific Aim 2 will determine if ovariectomy for 2, 12 or 20 weeks compromises the PKA/DRP1 pathway leading to synaptic loss and mitochondrial dysfunction and if these deficits can be restored by E2, an ER(3 agonist, DPN, or P4 treatment for 6 weeks, in vivo.
Specific Aim 3 will determine if age and post-ovariectomy duration, changes the synaptoneurosome response to E2, DPN or P4.
Specific Aim 4 will determine if therapy with DPN improves PKA/DRP1 pathway function, thereby ameliorating loss of synaptic integrity, mitochondrial immobility and fragmentation seen in a 5XFAD mice model. For all of the aims, we will assess DRPI phosphorylation state, a panel of pre- and post-synaptic markers, and a panel of bioenergetic measures.
For aims 1 and 4, we will conduct a detailed assessment of mitochnodrial fragmentation and mobility. Successful completion of these proposed studies could lead to new understanding of estrogen targets in the brain as well as potential new therapies for age-related cognitive decline and AD.

Public Health Relevance

The present application will test the hypothesis that estrogen signaling through mitochondrial ERp-PKA DRP-1 pathway may in part or entirely prevent age- and AD-related deficits in mitochondrial structure, function and movement and thereb preserve synaptic function. Successful completion of these proposed studies could lead to new understanding of estrogen targets in the brain as well as potential new therapies for age-related cognitive decline and AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG027956-06
Application #
8589555
Study Section
Special Emphasis Panel (ZAG1-ZIJ-9)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
6
Fiscal Year
2014
Total Cost
$235,339
Indirect Cost
$73,035
Name
University of North Texas
Department
Type
DUNS #
110091808
City
Fort Worth
State
TX
Country
United States
Zip Code
76107
Kaja, Simon; Payne, Andrew J; Naumchuk, Yuliya et al. (2017) Quantification of Lactate Dehydrogenase for Cell Viability Testing Using Cell Lines and Primary Cultured Astrocytes. Curr Protoc Toxicol 72:2.26.1-2.26.10
Mock, J Thomas; Chaudhari, Kiran; Sidhu, Akram et al. (2017) The influence of vitamins E and C and exercise on brain aging. Exp Gerontol 94:69-72
Sun, Fen; Nguyen, Trinh; Jin, Xin et al. (2016) Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk. Endocrinology 157:2067-79
Sarkar, S; Jun, S; Rellick, S et al. (2016) Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139-151
Rellick, Stephanie L; Hu, Heng; Simpkins, James W et al. (2016) Evaluation of Bioenergetic Function in Cerebral Vascular Endothelial Cells. J Vis Exp :
Richter, Frank; Koulen, Peter; Kaja, Simon (2016) N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release. Sci Rep 6:23481
Russell, Ashley E; Doll, Danielle N; Sarkar, Saumyendra N et al. (2016) TNF-? and Beyond: Rapid Mitochondrial Dysfunction Mediates TNF-?-Induced Neurotoxicity. J Clin Cell Immunol 7:
Strong, Randy; Miller, Richard A; Antebi, Adam et al. (2016) Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an ?-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15:872-84
Means, John C; Gerdes, Bryan C; Kaja, Simon et al. (2016) Caspase-3-Dependent Proteolytic Cleavage of Tau Causes Neurofibrillary Tangles and Results in Cognitive Impairment During Normal Aging. Neurochem Res 41:2278-88
Engler-Chiurazzi, Elizabeth B; Stapleton, Phoebe A; Stalnaker, Jessica J et al. (2016) Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition. J Toxicol Environ Health A 79:447-52

Showing the most recent 10 out of 118 publications