The central hypothesis of this proposal is that continued production of aggregation prone proteins leads to age onset proteotoxicity and eventually disease. Two areas will be studied using proteomics technology. The first is to identify the proteins involved in disassembly/proteolysis of protein aggregates. By using newly developed assays in the Kelly laboratory, disassembly and proteolysis activities will be followed over the course of biochemical enrichment. Proteomics will be used during the enrichment process to follow and assess the course of enrichment and then finally to identify the proteins responsible for the activity. Detoxification activities are under the control of the transcription factors HSF-1 and DAF-16. We will identify the proteins whose expression levels are under the control of these transcription factors by using quantitative proteomics when the levels of HSF-1 and DAF-16 are reduced by RNAi. The methods, techniques, and experience are available in the proteomics core to conduct these analyses. The core will employ large-scale protein identification technology developed in our lab called MudPIT (Multi-dimensional Protein Identification Technology). To perform MudPIT experiments we have several different types of mass spectrometers that can be used including LTQ-Orbitrap, LTQ and LTQ-ETD (Electron Transfer Dissociation) systems. Each instrument has particular strengths that can be applied to these projects. The LTQ-Orbitrap produces high resolution and high mass accuracy data that is good for confident protein identifications, the discovery of post translational modifications, and accurate quantitation. The LTQ is a slightly more sensitive and faster scanning instrument than the hybrid and can be used when sensitivity and sequence coverage are important. The LTQ-ETD system uses a new dissociation technique that is good for fragmenting large polypeptides. This particular instrument may have an advantage when attempting to identify proteins from aggregates or proteins that do not digest well.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Bamberger, Casimir; Martínez-Bartolomé, Salvador; Montgomery, Miranda et al. (2018) Deducing the presence of proteins and proteoforms in quantitative proteomics. Nat Commun 9:2320
Pankow, Sandra; Bamberger, Casimir; Calzolari, Diego et al. (2016) Deep interactome profiling of membrane proteins by co-interacting protein identification technology. Nat Protoc 11:2515-2528
Eleuteri, Simona; Di Giovanni, Saviana; Rockenstein, Edward et al. (2015) Novel therapeutic strategy for neurodegeneration by blocking A? seeding mediated aggregation in models of Alzheimer's disease. Neurobiol Dis 74:144-57
Pankow, Sandra; Bamberger, Casimir; Calzolari, Diego et al. (2015) ?F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528:510-6
Baird, Nathan A; Douglas, Peter M; Simic, Milos S et al. (2014) HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span. Science 346:360-3
Park, Sung Kyu Robin; Aslanian, Aaron; McClatchy, Daniel B et al. (2014) Census 2: isobaric labeling data analysis. Bioinformatics 30:2208-9
Koob, Andrew O; Shaked, Gideon M; Bender, Andreas et al. (2014) Neurogranin binds ?-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson's disease. Brain Res 1591:102-10
Greiner, Erin R; Kelly, Jeffery W; Palhano, Fernando L (2014) Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils. PLoS One 9:e105433
Bamberger, Casimir; Pankow, Sandra; Park, Sung Kyu Robin et al. (2014) Interference-free proteome quantification with MS/MS-based isobaric isotopologue detection. J Proteome Res 13:1494-501
Tsigelny, Igor F; Sharikov, Yuriy; Kouznetsova, Valentina L et al. (2014) Structural diversity of Alzheimer's disease amyloid-? dimers and their role in oligomerization and fibril formation. J Alzheimers Dis 39:583-600

Showing the most recent 10 out of 57 publications