Autophagy, the process that mediates degradation of intracellular constituents in lysosomes, is an essential component of the cellular quality control systems and of the cellular response to very different stressors. This project focuses on this role of different autophagic pathways as part of the cellular response to stress and aims to elucidate the contribution that the age-dependent changes in autophagy have on the inadequate response to stress in old organisms. During the previous period, we have identified a novel role of autophagy in the cellular response against lipotoxicity (with P4) and genotoxicity (with P3) that we will now explore in more detail in the context of aging, a condition in which we have identified a malfunctioning of two types of autophagy, macroautophagy (MA) and chaperone-mediated autophagy (CMA). In addition, we will incorporate analysis of endosomal microautophagy (eMI), an autophagic pathway that we identified in collaboration with P2, to our study. The overall goal of this proposal is 1) to elucidate the contribution of the impairment in autophagy with age to the functional deterioration and inability to orchestrate an efficient stress response in aging, 2) to understand the molecular mechanisms behind compensation among different autophagic pathways and 3) to devise interventions that could help overcome the autophagic failure in aging. The three original specific aims will be continued/expanded to address: 1) What happens to autophagy during stress? In this period we will focus on three stressors: lipotoxicity, proteotoxicity, and genotoxicity;2) What happens if autophagy does not work under stress conditions? We will utilize the recently generated conditional mouse models with compromised CMA and the ones with compromised MA to study their response to the three stressors and analyze the molecular basis of possible compensatory mechanisms among autophagic pathways; 3) Can we improve the response to stress by repairing autophagy? We will analyze the possible beneficial effect in the organ-specific response to stress of upregulating CMA by using genetic interventions and by continuing the development of chemical modulators of CMA. Relevance: Alterations in the ability to orchestrate an efficient response to stress underlie the basis of important age-related diseases. The studies in this project may provide the conceptual basis and tools for future efforts aimed at manipulating autophagy to improve the response to stress in the elderly and delay the onset of age-related diseases.

Public Health Relevance

A common characteristic of old organisms is their inability to efficiently respond to stress, which renders them vulnerable to different stressors. In fact, inadequate stress-responses have been shown to underlie the basis and/or to aggravate the course of common age-related diseases. This project investigates the contribution of malfunctioning of autophagy, one of the cellular defense systems, to the higher susceptibility of old organism to stress, and explores the possibility of upregulating this defensive mechanism with anti-aging purposes.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Kaushik, Susmita; Cuervo, Ana Maria (2016) AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12:432-8
Botbol, Yair; Guerrero-Ros, Ignacio; Macian, Fernando (2016) Key roles of autophagy in regulating T-cell function. Eur J Immunol 46:1326-34
Martinez-Lopez, Nuria; Garcia-Macia, Marina; Sahu, Srabani et al. (2016) Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver. Cell Metab 23:113-27
Pampliega, Olatz; Cuervo, Ana Maria (2016) Autophagy and primary cilia: dual interplay. Curr Opin Cell Biol 39:1-7
Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L et al. (2016) Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming. J Leukoc Biol 99:387-98
Morozova, Kateryna; Clement, Cristina C; Kaushik, Susmita et al. (2016) Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy. J Biol Chem 291:18096-106
Mitchell, Sarah J; Madrigal-Matute, Julio; Scheibye-Knudsen, Morten et al. (2016) Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab 23:1093-112
Madrigal-Matute, Julio; Cuervo, Ana Maria (2016) Regulation of Liver Metabolism by Autophagy. Gastroenterology 150:328-39
Tasset, Inmaculada; Cuervo, Ana Maria (2016) Role of chaperone-mediated autophagy in metabolism. FEBS J 283:2403-13
Ward, Carl; Martinez-Lopez, Nuria; Otten, Elsje G et al. (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 1861:269-84

Showing the most recent 10 out of 112 publications