Aging is associated with a loss of body weight, often referred to as the anorexia of aging, which is accompanied by loss of muscle mass (sarcopenia) and bone loss (osteoporosis). The cytokine-like hormone leptin is secreted from peripheral fissues including fat and skeletal muscle, and leptin deficiency is associated with decreased bone mass as well as loss of muscle mass and strength. We have identified an animal model, the aged C57BL/6 mouse, that shares a number of key features in common with the aging human musculoskeletal system: an age-related decline in serum lepfin, decline in serum IGF-1, decreased muscle mass, and loss of bone density. We have also found that leptin treatment increases serum IGF-1 and muscle mass in aged mice. Our preliminary studies therefore suggest that the decline in musculoskeletal funcfion that occurs with aging is due in part to alterations in the lepfin-IGFI axis. We also show for the first time that musculoskeletal tissues from aged mice show increased expression of microRNAs (miRNAs) targefing leptin. The central hypothesis of our proposal is that leptin is a key factor linking nutrient intake with normal musculoskeletal funcfion, but leptin signaling in musculoskeletal tissues is altered with age, contributing direcfiy to age-related loss of muscle and bone.
Specific Aim 1 will identify cell- and tissue-specific alterations in leptin expression with age, and will define the role of circulating leptin in regulating age-associated changes in the local and systemic secretion of IGF-1.
Aim 2 will determine how aging and nutrient intake alter leptin sensitivity and the expression of functional leptin receptors in muscle and bone cells.
Aim 3 will identify fissue-specific microRNAs that are altered with age and leptin treatment, and functional in vitro studies will be used to define the role of these small molecules in the proliferation and differentiation of myogenic and osteogenic cells. The proposed studies will therefore define new therapeutic targets and diagnostic biomarkers related to sarcopenia and fall risk that can be developed to improve upon exisfing fracture treatment and prevention strategies.

Public Health Relevance

The research proposed in this application will investigate the basic mechanisms by which aging alters normal leptin signaling in muscle and bone, and as such will contribute directly to the development of new therapeutic strategies and diagnostic biomarkers related to fall risk and debilitating bone fractures.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG036675-03
Application #
8463097
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
3
Fiscal Year
2013
Total Cost
$199,098
Indirect Cost
$66,366
Name
Georgia Regents University
Department
Type
DUNS #
966668691
City
Augusta
State
GA
Country
United States
Zip Code
30912
López, Melany; Bollag, Roni J; Yu, Jack C et al. (2016) Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells. PLoS One 11:e0152161
Howie, R Nicole; Durham, Emily L; Black, Laurel et al. (2016) Effects of In Utero Thyroxine Exposure on Murine Cranial Suture Growth. PLoS One 11:e0167805
Withrow, Joseph; Murphy, Cameron; Liu, Yutao et al. (2016) Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 18:286
Durham, Emily L; Howie, R Nicole; Black, Laurel et al. (2016) Effects of thyroxine exposure on the Twist 1 +/- phenotype: A test of gene-environment interaction modeling for craniosynostosis. Birth Defects Res A Clin Mol Teratol 106:803-813
Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra et al. (2016) Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model. Mol Cell Endocrinol 422:211-20
Hamrick, Mark W; McGee-Lawrence, Meghan E; Frechette, Danielle M (2016) Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front Endocrinol (Lausanne) 7:69
Sangani, Rajnikumar; Periyasamy-Thandavan, Sudharsan; Pathania, Rajneesh et al. (2015) The crucial role of vitamin C and its transporter (SVCT2) in bone marrow stromal cell autophagy and apoptosis. Stem Cell Res 15:312-21
El Refaey, Mona; Watkins, Christopher P; Kennedy, Eileen J et al. (2015) Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells. Mol Cell Endocrinol 410:87-96
Herberg, Samuel; Aguilar-Perez, Alexandra; Howie, R Nicole et al. (2015) Mesenchymal stem cell expression of SDF-1β synergizes with BMP-2 to augment cell-mediated healing of critical-sized mouse calvarial defects. J Tissue Eng Regen Med :
Herberg, Samuel; Kondrikova, Galina; Hussein, Khaled A et al. (2015) Mesenchymal stem cell expression of stromal cell-derived factor-1β augments bone formation in a model of local regenerative therapy. J Orthop Res 33:174-84

Showing the most recent 10 out of 33 publications