Influenza A pneumonia is the most common cause of death from an infectious agent in older patients. While the lung is the primary target of the influenza A virus, the resulting illness is characterized by dysfunction in multiple organs. Skeletal muscle weakness is an important manifestation of the systemic consequences of influenza A virus infection (IAV) and is manifest in approximately half of the patients admitted to the intensive care unit with respiratory failure. This weakness can persist for years after hospital discharge and it is a major contributor to morbidity. We present preliminary data suggesting that endocrine signals released from the injured lung both induce and protect against skeletal muscle dysfunction during influenza A infection. We hypothesize that the frailty of the proteostasis networks in the muscles of aged mice shifts this balance, resulting in enhanced skeletal muscle dysfunction. Thus, we propose via three interrelated aims, to elucidate the signaling pathways regulating skeletal muscle degradation and proteostasis during influenza A pneumonia:
in Specific Aim # 1, we propose to determine whether influenza A infection causes disruption in muscle proteostasis via IL-6, STAT3, FOXO3 and atrogin1 dependent degradation of skeletal muscle;
in Specific Aim # 2, we propose to assess whether in aged mice influenza A infection causes AMPK activation and thus inhibition of mTOR which leads to impaired proliferation/differentiation of satellite cells and recovery and in Specific Aim # 3, we will determine whether modulating the chaperone response can improve muscle function in aged mice. We have conducted experiments for each of the specific aims, and the preliminary data support the feasibility of this proposal. Completion of the proposed research will provide novel, clinically relevant information regarding the effects of influenza A infection on myoproteostasis. This novel information is of biologic and clinical relevance and should lead to the design of innovative approaches to improve proteostasis and skeletal muscle function in older patients with influenza A infection.

Public Health Relevance

It is not required per instructions stated on the Funding Opportunity Announcement PAR-13-258, Section IV. Application and Submission Information, Project, Research & Related Other Project Information (Project), ?Project Narrative: Do not complete?.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
1P01AG049665-01
Application #
8855156
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2015-07-01
Budget End
2016-05-31
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Sala, Marc A; Balderas-Martínez, Yalbi Itzel; Buendía-Roldan, Ivette et al. (2018) Inflammatory pathways are upregulated in the nasal epithelium in patients with idiopathic pulmonary fibrosis. Respir Res 19:233
Dela Cruz, Charles S; Wunderink, Richard G; Christiani, David C et al. (2018) Future Research Directions in Pneumonia. NHLBI Working Group Report. Am J Respir Crit Care Med 198:256-263
Galluzzi, Lorenzo; Vitale, Ilio; Aaronson, Stuart A et al. (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486-541
Soberanes, Saul; Misharin, Alexander V; Jairaman, Amit et al. (2018) Metformin Targets Mitochondrial Electron Transport to Reduce Air-Pollution-Induced Thrombosis. Cell Metab :
Wang, Chao; Balch, William E (2018) Bridging Genomics to Phenomics at Atomic Resolution through Variation Spatial Profiling. Cell Rep 24:2013-2028.e6
Kong, Hyewon; Chandel, Navdeep S (2018) Regulation of redox balance in cancer and T cells. J Biol Chem 293:7499-7507
Hutt, Darren M; Mishra, Sanjay Kumar; Roth, Daniela Martino et al. (2018) Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J Biol Chem 293:13682-13695
Hsiao, Hsi-Min; Fernandez, Ramiro; Tanaka, Satona et al. (2018) Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1?. J Clin Invest 128:2833-2847
McQuattie-Pimentel, Alexandra C; Budinger, G R Scott; Ballinger, Megan N (2018) Monocyte-derived Alveolar Macrophages: The Dark Side of Lung Repair? Am J Respir Cell Mol Biol 58:5-6
Hutt, Darren M; Loguercio, Salvatore; Campos, Alexandre Rosa et al. (2018) A Proteomic Variant Approach (ProVarA) for Personalized Medicine of Inherited and Somatic Disease. J Mol Biol 430:2951-2973

Showing the most recent 10 out of 58 publications