Most people do not suffer from autoimmunity despite the production of CD4+ T cells expressing T cell receptors (TCR) specific for self peptide (p):major histocompatibility complex 1 (MHCII) ligands. Many studies in TCR transgenic mouse models have shown that this is the case because these CD4+ T cells are deleted in the thymus or differentiate into anergic or suppressive regulatory T (Treg) cells in secondary lymphoid organs. Nevertheless, consensus on the relative contributions of these mechanisms to tolerance to all self antigens has not been reached. Fundamental questions therefore remain to be answered such as how efficient is thymic deletion, do anergic T cells exist, is the Treg cell repertoire really enriched for self pMHCIl-specific cells, and which of these mechanisms fails during autoimmunity? We will answer these questions by studying polyclonal endogenous CD4+ T cells specific for self p:MHCII ligands using a sensitive p:MHCII tetramer-based cell enrichment method. In mice, we will determine whether T cells expressing TCRs with the highest affinities for ubiquitous self p:MHCII ligands are deleted, and whether some T cells specific for p:MHCII ligands derived from peripheral tissue-specific proteins expressed in the thymus under the control ofthe Autoimmune Regulator (AIRE) escape deletion but become anergic or differentiate into Treg cells in the secondary lymphoid organs. We will attempt to confirm these hypotheses in humans by direct ex vivo tracking of the number, function, and phenotype of insulin or glutamic acid decarboxylase p:MHCII-specific CD4+ T cells from normoglycemic or type 1 diabetic people. If successful, we will have learned how efficient thymic clonal deletion is, whether anergy exists as a tolerance mechanism, and if self-reactive T cell populations are enriched for Treg cells,, all within normal polyclonal repertoires. These experiments could set the stage for future clinical trials to determine if self p:MHCII tetramer-based cell enrichment can be used as a tool for early diagnosis of diabetes or to monitor the efficacy of immunotherapy.

Public Health Relevance

This project focuses on the mechanisms of immune tolerance that prevent CD4+ T cells from causing autoimmunity. It will employ innovative T cell tracking technology to bridge the gap between mechanistic studies in mouse models and application to the human immune system. The approach described in this application could lead to new methods for diagnosing diabetes and monitoring immunotherapy

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI035296-20A1
Application #
8592208
Study Section
Special Emphasis Panel (ZAI1-LAR-I (M1))
Project Start
Project End
Budget Start
2013-05-15
Budget End
2014-04-30
Support Year
20
Fiscal Year
2013
Total Cost
$405,856
Indirect Cost
$138,845
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Malhotra, Deepali; Linehan, Jonathan L; Dileepan, Thamotharampillai et al. (2016) Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns. Nat Immunol 17:187-95
Beura, Lalit K; Hamilton, Sara E; Bi, Kevin et al. (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532:512-6
Kalekar, Lokesh A; Schmiel, Shirdi E; Nandiwada, Sarada L et al. (2016) CD4(+) T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat Immunol 17:304-14
Xing, Yan; Wang, Xiaodan; Jameson, Stephen C et al. (2016) Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nat Immunol 17:565-73
Martinov, Tijana; Spanier, Justin A; Pauken, Kristen E et al. (2016) PD-1 pathway-mediated regulation of islet-specific CD4(+) T cell subsets in autoimmune diabetes. Immunoendocrinology (Houst) 3:
Pritchard, Gretchen Harms; Cross, Eric W; Strobel, Marjorie et al. (2016) Spontaneous partial loss of the OT-I transgene. Nat Immunol 17:471
Grimm, Jennifer M; Schmeling, David O; Dunmire, Samantha K et al. (2016) Prospective studies of infectious mononucleosis in university students. Clin Transl Immunology 5:e94
Schmiel, Shirdi E; Yang, Jessica A; Jenkins, Marc K et al. (2016) Cutting Edge: Adenosine A2a Receptor Signals Inhibit Germinal Center T Follicular Helper Cell Differentiation during the Primary Response to Vaccination. J Immunol :
Spanier, Justin A; Frederick, Daniel R; Taylor, Justin J et al. (2016) Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment. Nat Commun 7:11804
Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E et al. (2015) Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells. J Immunol 195:4028-37

Showing the most recent 10 out of 122 publications