New typhoid vaccines are urgently required. Salmonella serovars are rapidly developing resistance to antibiotics and licensed vaccines have safety concerns or are pooriy immunogenic. Individuals living in endemic areas often suffer from repeated bouts of typhoid and relapse of primary infection also occurs in 5- 15% of patients. Thus, Salmonella can persist in an immune competent host and acquired immune responses appear unable to completely eradicate infection. Understanding the basis of this immunological problem is critical for the development of effective vaccines against typhoid and is the primary focus of this sub-project. In the previous funding period, we developed a mouse model that allows study of persistent Salmonella shedding, antibiotic-mediated relapsing disease, and the failure to develop robust immunity to this bacterial infection. In this renewal application we propose to study this model in detail and determine the anatomical location of bacteria persistence and develop a detailed understanding of B cells and T cell responses in protective immunity. Our focus on adaptive immunity to enteric and persisting infections provides significant overiap with projects 1 (Lefrancois) and 4 (Cauley).
The specific aims of this sub-project are:
Aim 1. To examine a new model of relapsing Salmonella infection to test thel hypothesis that systemic spread of bacteria initiates from intestinal epithelial cells (lEC).
Aim 2. To visualize Sa/mone//a-specific multifunctional Thi cells and define their role in protection against primary, secondary', and relapsing typhoid.
Aim 3. To visualize Sa/mone//a-specific B cells in vivo and define the role of antibod^ in protection against relapsing infection. Our new preliminary data describe the recent development of state-of-the-art technology to track Sa//T)orje//a-specific lymphocyte responses in vivo, and the generation of ajnovel antibiotic-treatment model to study relapsing typhoid. Our hypothesis is that B and T cells play essential, non-overiapping, roles in bacterial clearance during primary and relapsing Salmonella infection. i

Public Health Relevance

Typhoid kills over 200,000 people every year in developing countries and is recognized as a potential bioterrorist threat in the US. This proposal aims to understand why the adaptive immune response to Salmonella is unable to clear primary infection and allows for persistent and relapsing infection to occur. Understanding these unusual features of host-pathogen interaction will be crucial to the development of effective typhoid vaccines and will expand our understanding of persistent and relapsing bacterial infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI056172-09
Application #
8728379
Study Section
Special Emphasis Panel (ZAI1-PA-I)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
9
Fiscal Year
2014
Total Cost
$783,252
Indirect Cost
$227,955
Name
University of Connecticut
Department
Type
DUNS #
022254226
City
Farmington
State
CT
Country
United States
Zip Code
06030
Tsurutani, Naomi; Mittal, Payal; St Rose, Marie-Clare et al. (2016) Costimulation Endows Immunotherapeutic CD8 T Cells with IL-36 Responsiveness during Aerobic Glycolysis. J Immunol 196:124-34
Song, Jeongmin; Wilhelm, Cara L; Wangdi, Tamding et al. (2016) Absence of TLR11 in Mice Does Not Confer Susceptibility to Salmonella Typhi. Cell 164:827-8
Benoun, Joseph M; Labuda, Jasmine C; McSorley, Stephen J (2016) Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory. MBio 7:
Svedova, Julia; Tsurutani, Naomi; Liu, Wenhai et al. (2016) TNF and CD28 Signaling Play Unique but Complementary Roles in the Systemic Recruitment of Innate Immune Cells after Staphylococcus aureus Enterotoxin A Inhalation. J Immunol 196:4510-21
Romagnoli, Pablo A; Sheridan, Brian S; Pham, Quynh-Mai et al. (2016) IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Proc Natl Acad Sci U S A 113:8502-7
Cauley, Linda S (2016) Environmental cues orchestrate regional immune surveillance and protection by pulmonary CTLs. J Leukoc Biol 100:905-912
Romagnoli, P A; Fu, H H; Qiu, Z et al. (2016) Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection. Mucosal Immunol :
Cauley, Linda S; Vella, Anthony T (2015) Why is coinfection with influenza virus and bacteria so difficult to control? Discov Med 19:33-40
Colpitts, Sara L; Puddington, Lynn; Lefrançois, Leo (2015) IL-15 receptor α signaling constrains the development of IL-17-producing γδ T cells. Proc Natl Acad Sci U S A 112:9692-7
Pham, Oanh H; McSorley, Stephen J (2015) Protective host immune responses to Salmonella infection. Future Microbiol 10:101-10

Showing the most recent 10 out of 76 publications