Anti-microbial T cell responses play a major role in determining the outcome of infection. Chronic infections are often distinguished by T cell responses that are not able to fully eliminate the pathogen. The mechanisms that explain this failure of T cell effector responses are only beginning to be understood. The regulation of T cell responses to infection reflects a delicate balance between effector functions needed to eliminate the microbe and the potential to cause immunopathology. Regulating the immune response to avoid tissue damage may be particularly important in the setting of chronic infection. During the current funding period, we have used the lymphocytic choriomeningitis virus (LCMV) model to investigate how inhibitory pathways in the B7:CD28 family regulate T cell responses during chronic infection. Our studies indicate that PD-1 and its ligands, PD-L1 and PD-L2, contribute directly to T cell exhaustion and lack of viral control during chronic LCMV infection. In vivo blockade of PD-1 :PD-L1 interactions in chronically infected mice restores T cell function and leads to a substantial reduction in virus levels. Thus, these studies identify a specific mechanism of T cell exhaustion, and suggest that blockade of this pathway may provide a new therapeutic approach for chronic infections. Further studies are needed to determine how to best modulate PD-1 and its ligands to activate anti-viral T cells while minimizing the risk of immunopathology and autoimmunity, since PD-1 and its ligands also have key roles in regulating tolerance. The discovery of the PD-L1:B7-1 pathway leads us to ask whether PD-L1:PD-1 and PD-L1:B7-1 interactions have unique or overlapping roles in controlling chronic infection, T cell exhaustion, and immunopathology. Our main hypothesis is that the newly discovered PD-L1:B7-1 pathway, as well as PD-L1:PD-1 and PD-L2:PD-1 interactions, regulate virus-specific T cell responses and viral control during chronic infection. PD-L1 may trigger more profound inhibitory effects than PD-1 because PD-L1 has the potential to trigger two inhibitory interactions. To test this hypothesis, our Specific Aims are to: 1) Analyze the functional significance of the newly defined PD-L1:B7-1 pathway, and the relative contributions of the PD-L1:B7-1 and PD-L1:PD-1 pathways in controlling the balance between virus-specific immunity and immunopathology. 2) Analyze the role ofPD-L1 on specific cell types in regulating Tee// responses, viral clearance and immunopathology, and 3) Determine how PD-L2 controls the balance between viral immunity and immunopathology. Our goal is to determine the best therapeutic modality for enhancing viral clearance while minimizing immunopathology.

Public Health Relevance

These studies will provide new insights into how, where and when PD-1, PD-L1 and PD-L2 regulate chronic viral infection, and how to effectively manipulate them to control chronic infection while minimizing the risk of autoimmunity and immunopathology. The results of our studies will have implications for developing new therapies for human chronic viral infections, cancer, autoimmune diseases and increasing success of transplantation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI056299-10
Application #
8712937
Study Section
Special Emphasis Panel (ZAI1-RJ-I (J1))
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$467,047
Indirect Cost
$76,138
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Xu, Jie; Sun, Heather H; Fletcher, Christopher D M et al. (2016) Expression of Programmed Cell Death 1 Ligands (PD-L1 and PD-L2) in Histiocytic and Dendritic Cell Disorders. Am J Surg Pathol 40:443-53
Borges, Christopher M; Reichenbach, Dawn K; Kim, Beom Seok et al. (2016) Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival. Transpl Int 29:930-40
Chapuy, Bjoern; Roemer, Margaretha G M; Stewart, Chip et al. (2016) Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 127:869-81
Schildberg, Frank A; Klein, Sarah R; Freeman, Gordon J et al. (2016) Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity 44:955-72
Schönle, Anne; Hartl, Frederike A; Mentzel, Jan et al. (2016) Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells. Blood 127:1930-9
Flynn, Ryan; Paz, Katelyn; Du, Jing et al. (2016) Targeted Rho-associated kinase 2 inhibition suppresses murine and human chronic GVHD through a Stat3-dependent mechanism. Blood 127:2144-54
Zeiser, Robert; Blazar, Bruce R (2016) Preclinical models of acute and chronic graft-versus-host disease: how predictive are they for a successful clinical translation? Blood 127:3117-26
Hirakawa, Masahiro; Matos, Tiago; Liu, Hongye et al. (2016) Low-dose IL-2 selectively activates subsets of CD4(+) Tregs and NK cells. JCI Insight 1:e89278
Li, Wei; Liu, Liangyi; Gomez, Aurelie et al. (2016) Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight 1:
Lo, Tsun-Ho; Silveira, Pablo A; Fromm, Phillip D et al. (2016) Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol 197:885-98

Showing the most recent 10 out of 257 publications