The focus of Project 2 of this Program Project is to continue to pursue approaches to cultivated human caliciviruses and to understand the molecular basis of restriction of virus gene expression, replication and growth in cell systems. Although the clinical and economic significance of the human noroviruses as the most important cause of global foodborne and waterborne illness is now recognized, factors affecting the persistence and transmission of viable virus in the environment and the underlying mechanisms of pathogenesis and immunity are poorly understood. This lack of understanding is largely due to the lack of available in vitro cultivation or animal models of infection. Our long-term goal is to exploit fundamental discoveries made in the previous project period that can measure in vitro infectivity and new in vitro cell culture systems for gastrointestinal epithelium.
In Specific Aim 1, we will improve and develop efficient in vitro methods for cultivation of Norwalk virus and other noroviruses. Studies in this aim will determine if the restriction of viral spread in RNA-transfected cells is due to the lack of a co-receptor. These studies will also exploit new ideas to obtain and maintain primary human intestinal epithelial cells in culture.
In Specific Aim 2, we propose to understand the molecular mechanisms by which norovirus protein expression regulates cellular innate responses as well as whether these cellular responses regulate viral replication and spread.
In Specific Aim 3, we propose to use gene expression and replication systems to dissect the mechanisms by which VP1, VP2, and VPg interact with each other and with genomic RNA for RNA encapsidation. The results from these studies will generate new knowledge about the replication of noroviruses and will complement and allow functional assessment of methods of virus detection as well as of antiviral that are developed in Projects 1 and 3.

Public Health Relevance

The proposed studies address the single largest challenge in studying noroviruses - the lack of efficient in vitro culfivafion systems. Understanding the basis for host restriction of norovirus replicafion will lead the way for successful virus cultivafion, as well as faciliate demonstration of effecfiveness of antivirals, development of rapid diagnosfic assays and evaluation of whether correlates of protective immunity exist

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI057788-09
Application #
8450097
Study Section
Special Emphasis Panel (ZAI1-GPJ-M)
Project Start
2013-04-01
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
9
Fiscal Year
2013
Total Cost
$366,816
Indirect Cost
$127,848
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Ajami, Nadim J; Kavanagh, Owen V; Ramani, Sasirekha et al. (2014) Seroepidemiology of norovirus-associated travelers' diarrhea. J Travel Med 21:6-11
Qu, Lin; Vongpunsawad, Sompong; Atmar, Robert L et al. (2014) Development of a Gaussia luciferase-based human norovirus protease reporter system: cell type-specific profile of Norwalk virus protease precursors and evaluation of inhibitors. J Virol 88:10312-26
Venkataram Prasad, B V; Air, Gillian M (2014) Editorial overview: virus-glycan interactions and pathogenesis. Curr Opin Virol 7:v-vi
Atmar, Robert L; Opekun, Antone R; Gilger, Mark A et al. (2014) Determination of the 50% human infectious dose for Norwalk virus. J Infect Dis 209:1016-22
Huang, Wanzhi; Samanta, Moumita; Crawford, Sue E et al. (2014) Identification of human single-chain antibodies with broad reactivity for noroviruses. Protein Eng Des Sel 27:339-49
Katayama, Kazuhiko; Murakami, Kosuke; Sharp, Tyler M et al. (2014) Plasmid-based human norovirus reverse genetics system produces reporter-tagged progeny virus containing infectious genomic RNA. Proc Natl Acad Sci U S A 111:E4043-52
Ramani, Sasirekha; Atmar, Robert L; Estes, Mary K (2014) Epidemiology of human noroviruses and updates on vaccine development. Curr Opin Gastroenterol 30:25-33
Shanker, Sreejesh; Czako, Rita; Sankaran, Banumathi et al. (2014) Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses. J Virol 88:6168-80
Venkataram Prasad, B V; Shanker, Sreejesh; Hu, Liya et al. (2014) Structural basis of glycan interaction in gastroenteric viral pathogens. Curr Opin Virol 7:119-27
Rogers, Jennifer D; Ajami, Nadim J; Fryszczyn, Bartlomiej G et al. (2013) Identification and characterization of a peptide affinity reagent for detection of noroviruses in clinical samples. J Clin Microbiol 51:1803-8

Showing the most recent 10 out of 47 publications