The Severe Acute Respiratory Syndrome (SARS) causes significant mortality and no effective vaccine is available. Viruses closely related to SARS coronavirus (SARS-CoV) have been found in bats in several parts of the world, making re-emergence of SARS a distinct possibility. We propose to develop a safe inactivated and second-generation vaccine to prevent SARS. We showed that virus deleted in the small envelope (E) protein (rSARS-CoV-Delta E), or in this E protein plus six additional genes (6, 7a, 7b, 8a, 8b, and 9b) accessory for replication were attenuated in hamsters and mice. Among the deleted genes, E gene was the main one responsible for virus attenuation in the animal models tested. Thus, virus with either deleted or mutated E protein serves as a useful platform for the production of a chemically inactivated vaccine, and for the engineering of a live attenuated anti-SARS vaccine. We have shown that SARS-CoV E protein regulates host stress and unfolded protein responses and, consequent immune responses to the virus. We propose the identification and construction of rSARS-CoV including E protein mutants that elicit strong immune responses and are still attenuated.
The specific aims of this project are: (i) The construction of rSARS-CoV viruses with modified E protein mutants eliciting higher immune responses to the virus by maintaining E protein's role in morphogenesis. We hypothesize that preventing the interaction of E protein with host cell proteins involved in stress response signaling will lead to an enhanced immune response. E protein mutant construction will be based on the generation of an rSARS-CoV with a mutator phenotype. (ii) To test rSARSCoV-E* as vaccine candidates in mice using a mouse adapted prototype. We will analyze the immune responses to selected vaccine candidates, and the influence of non-essential group specific genes and of age. (iii) To increase the safety and titer of selected rSARS-CoV-E* vaccine candidates by modification of replicase genes, and to increase vaccine candidate titers using a virus with mutator phenotype.

Public Health Relevance

This proposal describes the development of a novel attenuated vaccine that will protect against SARS as no vaccine is available. The possibility of recurrence exists, since SARS-like CoV are present in bats. Thus, it is important to develop a vaccine that will be safe and immunogenic in order to protect human populations in future outbreaks of this disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI060699-08
Application #
8494519
Study Section
Special Emphasis Panel (ZAI1-EC-M)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
8
Fiscal Year
2013
Total Cost
$272,484
Indirect Cost
$63,437
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Park, Jung-Eun; Li, Kun; Barlan, Arlene et al. (2016) Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci U S A 113:12262-12267
Zuñiga, Sonia; Pascual-Iglesias, Alejandro; Sanchez, Carlos M et al. (2016) Virulence factors in porcine coronaviruses and vaccine design. Virus Res 226:142-151
Perlman, Stanley; Vijay, Rahul (2016) Middle East respiratory syndrome vaccines. Int J Infect Dis 47:23-8
Meyerholz, David K; Lambertz, Allyn M; McCray Jr, Paul B (2016) Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome. Am J Pathol 186:78-86
Vijay, Rahul; Perlman, Stanley (2016) Middle East respiratory syndrome and severe acute respiratory syndrome. Curr Opin Virol 16:70-6
Fehr, Anthony R; Channappanavar, Rudragouda; Jankevicius, Gytis et al. (2016) The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. MBio 7:
Zhang, Naru; Channappanavar, Rudragouda; Ma, Cuiqing et al. (2016) Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol 13:180-90
Luke, Thomas; Wu, Hua; Zhao, Jincun et al. (2016) Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Sci Transl Med 8:326ra21
Channappanavar, Rudragouda; Fehr, Anthony R; Vijay, Rahul et al. (2016) Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe 19:181-93
Alshukairi, Abeer N; Khalid, Imran; Ahmed, Waleed A et al. (2016) Antibody Response and Disease Severity in Healthcare Worker MERS Survivors. Emerg Infect Dis 22:

Showing the most recent 10 out of 80 publications