The realization that HIV-1 eradication is impossible with current treatment raises two fundamental questions about HIV pathogenesis: how and where does the virus sustain itself as a life-long persistent infection? Our preliminary data suggest lymphoid tissues (LT), i.e., gut associated lymphoid tissue (GALT) and secondary lymph nodes (LN), are a major site of HIV persistence. We found that CD4+ cells are rapidly depleted in GALT and LN soon after HIV acquisition and there is poor CD4 reconstitution with antiretroviral therapy (ARV). In these patients with HIV RNA in plasma <400 or 50, we have also found: 2 LTR episomes (a marker for recent HIV replication) in GALT and LN, frequencies of HIV DNA+ cells in GALT increase, drug penetration into LN and GALT is impaired, and depletion of central memory CD4 cells in GALT may correlate to frequency of reactivation of chronic latent mucosal pathogens like herpes simplex 2 (HSV2). These data suggest this cryptic HIV replication in LT is a potential reservoir of importance and provide the basis for 3 inter-related hypotheses: 1) cryptic replication occurs in LT and fuels viral recrudescence with treatment interruption, 2) it is a consequence of inadequate concentration of drug in CD4 cells of GALT and LN, and 3) it eventually undermines immune function in GALT and LN. The critical predictions and thus key measurements to test these hypotheses and their corollaries are to determine the extent of cryptic HIV replication in GALT and LN in relation to concentrations of active drug levels and assess the impact of ongoing replication on immune function in GALT and LN. Dr. Stevenson will isolate viral and episomal DNA from all compartments to establish the existence of a LT reservoir and perform sequence analysis to determine relatedness of virus appearing in PB after treatment interruption to the cryptic reservoir in LT. Dr. Haase will use in situ hybridization, laser capture microdissection, and in situ per to establish the size and location of persistent reservoirs of infection in each compartment. Dr. Fletcher will determine ARV levels in GALT and LN CD4+ cells, look for evidence of efflux mechanisms causing decreased intracellular concentration of drug, and estimate the concentration of drug in LT required to fully suppress cryptic replication. Dr. Schacker will determine the absolute size of CD4 subpopulations in each compartment and relationships between levels of cryptic replication, CD4 depletion in GALT, and measures of mucosal reactivation of mucosal pathogens. Dr. Douek will perform flow cytometry to measure antigen specific responses and cell separation and culture virus from CD4 cells obtained from each compartment before and during treatment interruption. If our hypotheses are correct it will point the way toward improved therapies whose impact will be measured by improved control of viral replication and preservation of immune function in the relevant LT reservoirs.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-CCH-A (M1))
Program Officer
Embry, Alan C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Mitchell, Caroline; Roemer, Emily; Nkwopara, Evangelyn et al. (2014) Correlation between plasma, intracellular, and cervical tissue levels of raltegravir at steady-state dosing in healthy women. Antimicrob Agents Chemother 58:3360-5
Rizzardi, Anthony E; Rosener, Nikolaus K; Koopmeiners, Joseph S et al. (2014) Evaluation of protein biomarkers of prostate cancer aggressiveness. BMC Cancer 14:244
Fletcher, Courtney V; Staskus, Kathryn; Wietgrefe, Stephen W et al. (2014) Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A 111:2307-12
Rizzardi, Anthony E; Vogel, Rachel Isaksson; Koopmeiners, Joseph S et al. (2014) Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer 120:1800-9
Podany, Anthony T; Winchester, Lee C; Robbins, Brian L et al. (2014) Quantification of cell-associated atazanavir, darunavir, lopinavir, ritonavir, and efavirenz concentrations in human mononuclear cell extracts. Antimicrob Agents Chemother 58:2866-70
Cory, Theodore J; Schacker, Timothy W; Stevenson, Mario et al. (2013) Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS 8:190-5
Baheti, Gautam; King, Jennifer R; Acosta, Edward P et al. (2013) Age-related differences in plasma and intracellular tenofovir concentrations in HIV-1-infected children, adolescents and adults. AIDS 27:221-5
Rizzardi, Anthony E; Johnson, Arthur T; Vogel, Rachel Isaksson et al. (2012) Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol 7:42
Zeng, Ming; Southern, Peter J; Reilly, Cavan S et al. (2012) Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog 8:e1002437
Sandkovsky, Uriel; Swindells, Susan; Moore, Ryan et al. (2012) Acceptable plasma concentrations of raltegravir and etravirine when administered by gastrostomy tube in a patient with advanced multidrug-resistant human immunodeficiency virus infection. Pharmacotherapy 32:142-7

Showing the most recent 10 out of 17 publications