The main objectives of Project 2 are to identify primary HIV-1 envelope protein (Env) that have high ability in eliciting antibodies against the CD4 binding site (CD4bs) and, if successful, to further select those Env antigens that can also elicit broad neutralizing activities through the induction of anti-CD4bs antibodies.
Aim 1 To Identify variation in the antigenicity of the CD4bs for primary Envs of HIV-1. CD4bs is a key target for eliciting broad neutralizing antibodies (NAbs) against HIV-1, as shown by previous studies that had used mAb b12, and more recently, using sera from HIV infected individuals. Our recent studies have shown that not every HIV primary Env antigen is equally effective in inducing NAb responses.
In Aim 1, we will test whether Envs from primary isolates of different backgrounds, phenotypes, and clades may have varying antigenicity for both neutralizing and non-neutralizing CD4bs antibodies.
Aim 2 To understand the consequences of CD4bs antigenic variation on the neutralization sensitivity of primary HIV-1 isolates. It is well known that heavy glycosylation and epitope masking play a key role in resistance to neutralization. Beyond these generalizations however, specific determinants of neutralization sensitivity or resistance are difficult to identify due to the complexity of the Env and the often unknown interactions and changes in conformation that occur as a result of trimerization of Env.
In Aim 2, we intend to determine if there is a link between CD4bs antigenicity and neutralization sensitivity.
Aim 3 To determine the immunogenicity of primary envelopes with varying levels of CD4bs antigencity and to select Env antigens that can elicit anti-CD4bs mediated neutralizing activities. The precise characteristics of a good HIV immunogen have yet to be identified. Previous studies have made a number of attempts to increase the immunogenicity of the HIV Env with limited success.
In Aim 3, we will test whether the CD4bs antigenicity may be one, as of yet unidentified, determinant of a good immunogen. Immunogenicity studies will be conducted with the DMA prime-protein boost approach to identify those primary Env antigens that can elicit strong anti-CD4bs antibodies, possibly with broad neutralizing activities as well.

Public Health Relevance

(Seeinstructions): We plan to study the unique structure of HIV outside coat to find a common pattern on the coat that will allow scientists to use them as part of the vaccine components to induce good protective immune responses.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-EC-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Massachusetts Medical School Worcester
United States
Zip Code
Suschak, John J; Wang, Shixia; Fitzgerald, Katherine A et al. (2015) Identification of Aim2 as a sensor for DNA vaccines. J Immunol 194:630-6
Pouliot, Kimberly; Buglione-Corbett, Rachel; Marty-Roix, Robyn et al. (2014) Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime-protein boost HIV-1 vaccine. Vaccine 32:5049-56
Chen, Yuxin; Vaine, Michael; Wallace, Aaron et al. (2013) A novel rabbit monoclonal antibody platform to dissect the diverse repertoire of antibody epitopes for HIV-1 Env immunogen design. J Virol 87:10232-43
Buglione-Corbett, Rachel; Pouliot, Kimberly; Marty-Roix, Robyn et al. (2013) Serum cytokine profiles associated with specific adjuvants used in a DNA prime-protein boost vaccination strategy. PLoS One 8:e74820
Pan, Ruimin; Sampson, Jared M; Chen, Yuxin et al. (2013) Rabbit anti-HIV-1 monoclonal antibodies raised by immunization can mimic the antigen-binding modes of antibodies derived from HIV-1-infected humans. J Virol 87:10221-31
Murphy, Megan K; Yue, Ling; Pan, Ruimin et al. (2013) Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth. PLoS Pathog 9:e1003173
O'Connell, Olivia; Repik, Alexander; Reeves, Jacqueline D et al. (2013) Efficiency of bridging-sheet recruitment explains HIV-1 R5 envelope glycoprotein sensitivity to soluble CD4 and macrophage tropism. J Virol 87:187-98
Peters, Paul J; Richards, Kathryn; Clapham, Paul (2013) Human immunodeficiency viruses: propagation, quantification, and storage. Curr Protoc Microbiol Chapter 15:Unit 15J.1
Gonzalez-Perez, Maria Paz; O'Connell, Olivia; Lin, Rongheng et al. (2012) Independent evolution of macrophage-tropism and increased charge between HIV-1 R5 envelopes present in brain and immune tissue. Retrovirology 9:20
Duenas-Decamp, Maria J; O'Connell, Olivia J; Corti, Davide et al. (2012) The W100 pocket on HIV-1 gp120 penetrated by b12 is not a target for other CD4bs monoclonal antibodies. Retrovirology 9:9

Showing the most recent 10 out of 22 publications