This HIVRAD program builds upon our recent successes in generating stable, proteolytically mature gp140 trimers (SOSIP gp140s) that mimic virion-associated envelope (Env) in topology and antigenicity. The overall goals of this HIVRAD program are reflected in three major milestones: 1) determine the structure of cleaved Env trimers at <4A resolution, 2) demonstrate methods to overcome HIV-1 Env's immunosuppressive properties, and 3) identify a SOSIP trimer vaccine that elicits heterologous neutralization of diverse HIV-1 isolates. Core A will be responsible for the overall scientific leadership of the HIVRAD. In addition, Core A will coordinate the highly inter-dependent and interactive studies to be performed in Project 1 (HIV-1 Env Vaccine Design, Dr. Moore) and Project 2 (HIV-1 Env Trimer Crystallography, Dr. Wilson) with technical support from Core B (Trimer Production and Immunogenicity Testing, Dr. Olson). Core A will provide a broad range of management support necessary to meet the goals of the HIVRAD program. The key functions of Core A can be grouped according to three Specific Aims: 1) Provide overall scientific direction and coordination for the program;2) Facilitate sharing of research data and resources within the program and with the broader scientific community;and 3) Provide statistical, fiscal, administrative and intellectual property support.
These Aims will be accomplished by an existing team of professionals with significant industry experience in each of the functional areas. The Core activities are central to the overall success of the HIVRAD program. Core A will facilitate the timely exchange of materials, data and other information between Project 1, Project 2 and additional collaborators. The interactive nature of the program necessitates that information and materials generated in the program be exchanged in a timely fashion with the participating members of the HIVRAD, and Core A will responsible for ensuring timely interactions between the HIVRAD Projects and Cores in order to optimally advance the program. In addition, Core A will establish and annually convene an external Scientific Advisory Group to assist with decisions on the direction of the research program. The overall role of Core A is to optimally coordinate, direct and facilitate the research of Project 1 and Project 2 in order to achieve our shared goal of providing a fundamental advance towards an HIV-1 vaccine.

Public Health Relevance

(Seeinstructions): Nearly 1% of the world's population is infected with HIV, and a preventive vaccine is urgently needed. Most efficacious vaccines elicit antibodies that can neutralize the pathogen, but current-generation HIV vaccines are not effective in this regard. Obstacles include our limited understanding of the structure and immunology of HIV-1 envelope trimers. This HIVRAD represents an innovative approach to addressing these challenges in order to provide a fundamental advance in our ability to elicit HIV-neutralizing antibodies with a vaccine.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI082362-06
Application #
8475547
Study Section
Special Emphasis Panel (ZAI1-EC-A)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
6
Fiscal Year
2013
Total Cost
$310,176
Indirect Cost
$100,828
Name
Weill Medical College of Cornell University
Department
Type
DUNS #
060217502
City
New York
State
NY
Country
United States
Zip Code
10065
Medina-Ramírez, Max; Sanders, Rogier W; Klasse, Per Johan (2014) Targeting B-cell germlines and focusing affinity maturation: the next hurdles in HIV-1-vaccine development? Expert Rev Vaccines 13:449-52
Guttman, Miklos; Garcia, Natalie K; Cupo, Albert et al. (2014) CD4-induced activation in a soluble HIV-1 Env trimer. Structure 22:974-84
Falkowska, Emilia; Le, Khoa M; Ramos, Alejandra et al. (2014) Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 40:657-68
Blattner, Claudia; Lee, Jeong Hyun; Sliepen, Kwinten et al. (2014) Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 40:669-80
Isik, Gözde; van Montfort, Thijs; Chung, Nancy P Y et al. (2014) Autoantibodies induced by chimeric cytokine-HIV envelope glycoprotein immunogens. J Immunol 192:4628-35
Yasmeen, Anila; Ringe, Rajesh; Derking, Ronald et al. (2014) Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology 11:41
Chung, Nancy P Y; Matthews, Katie; Kim, Helen J et al. (2014) Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies. Retrovirology 11:33
Garces, Fernando; Sok, Devin; Kong, Leopold et al. (2014) Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 159:69-79
Huang, Jinghe; Kang, Byong H; Pancera, Marie et al. (2014) Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature 515:138-42
Murin, Charles D; Julien, Jean-Philippe; Sok, Devin et al. (2014) Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. J Virol 88:10177-88

Showing the most recent 10 out of 28 publications