This HIVRAD program represents an integrated approach to exploring the structure and optimizing the immunogenicity of HIV-1 envelope (Env) trimers. The overall goal of the HIVRAD is to make significant advances toward development of an Env-based HIV-1 vaccine that induces a substantial neutralizing antibody response. The role of Project 2 is to structurally characterize proteolytically cleaved, disulfide-stabilized SOSIP gp140 trimers by x-ray crystallography, to determine their three-dimensional structure and to suggest rational improvements in the constructs that would improve stability and immunogenicity.
Specific Aim 1 : To determine crystal structures of trimeric SOSIP gp140 at <4 A. Using constructs designed in Project 1 and produced in Core B, we will evaluate a series of SOSIP gp140 trimers tailored for crystallizability, both in unliganded form and as complexes with Fabs and/or CD4. We will evaluate Fabs to each of the major neutralization epitopes on Env as well as different CD4-based proteins. We will use state-of-the art robotic screening methods to test the most promsing combinations of Env modifications (deglycosylation, variable loop deletions, etc.), Fabs, and CD4 in order to find suitable conditions for forming diffraction quality crystals. Suitable crystals will be tested again by high throughput automated and robotic methods for diffraction and optimization, and the best crystals will be used for data collection and structure determination by methods such as molecular replacement (MR) and single- (SAD) or multi-wavelength anomalous dispersion (MAD).
Specific Aim 2 : To improve stability, antigenicity and immunogenicity of the HIV-1 Env trimers by rational design. The crystal structures will be used to enhance the stability and immune properties of the Env trimers. The structural results will be compared and correlated with biological data generated in Project 1 and Core B in order to evaluate the quality and utility of the constructs, and to improve the design of future SOSIP constructs as potential vaccine candidates.

Public Health Relevance

This project is highly relevant for design of an HIV-1 vaccine that would elicit neutralizing antibodies. This project is highly challenging, but currently represents the holy grail in the structural biology of HIV-1. An env trimer structure is required to assess why it is so difficult to mount an effective, potent and broadly neutralizing immune response against primary isolates and across clades.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Weill Medical College of Cornell University
New York
United States
Zip Code
van Gils, Marit J; van den Kerkhof, Tom L G M; Ozorowski, Gabriel et al. (2016) An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nat Microbiol 2:16199
Go, Eden P; Cupo, Albert; Ringe, Rajesh et al. (2016) Native Conformation and Canonical Disulfide Bond Formation Are Interlinked Properties of HIV-1 Env Glycoproteins. J Virol 90:2884-94
Schiffner, Torben; de Val, Natalia; Russell, Rebecca A et al. (2016) Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J Virol 90:813-28
Klasse, P J; LaBranche, Celia C; Ketas, Thomas J et al. (2016) Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathog 12:e1005864
Pugach, Pavel; Ozorowski, Gabriel; Cupo, Albert et al. (2015) A native-like SOSIP.664 trimer based on an HIV-1 subtype B env gene. J Virol 89:3380-95
Sanders, Rogier W; van Gils, Marit J; Derking, Ronald et al. (2015) HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349:aac4223
de Taeye, Steven W; Ozorowski, Gabriel; Torrents de la Peña, Alba et al. (2015) Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell 163:1702-15
Sliepen, Kwinten; Medina-Ramírez, Max; Yasmeen, Anila et al. (2015) Binding of inferred germline precursors of broadly neutralizing HIV-1 antibodies to native-like envelope trimers. Virology 486:116-20
Dosenovic, Pia; von Boehmer, Lotta; Escolano, Amelia et al. (2015) Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell 161:1505-15
Alexander, Marina R; Ringe, Rajesh; Sanders, Rogier W et al. (2015) What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure? J Virol 89:5981-95

Showing the most recent 10 out of 56 publications