Staphylococcus aureus is emerging as the most problemafic bacterial pathogen facing our community and healthcare settings. An effective strategy for S. aureus to survive in the host is to attach to a surface and develop into an encased community of cells called a biofilm. We recently discovered that quorum-sensing can control the balance between a planktonic or biofilm lifestyle, suggesting that modulation of this dispersal mechanism could be an effective therapeutic strategy. In collaboration with Dr. Kenneth Bayles (the PI of this PPG), we demonstrated that a deletion of the S. aureus secreted nuclease (Nuc) caused an overall thickening of the biofilm and inhibited secondary structure formation, and we have confirmed a recent report that S. aureus possesses a second extracellular nuclease activity (Nuc2). Based on these findings, our central hypothesis is that control over extracellular nuclease activity is a critical determinant of biofilm maturation and dispersal. To address this question, in Specific Aim 1 we will (i) define the role of Nuc and Nuc2 in biofilm maturation;(ii) determine whether nuclease activity is important for biofilm dispersal;and (iii) modulate biofilm integrity with controlled exposure to nuclease. We further propose that S. aureus nuclease is an important virulence factor. To investigate the nuclease function in disease, we will work with Dr. Tammy Kielian (Project 4 leader) and (i) examine the role of nuclease activity in evasion of neutrophil extracellular traps (NETs);(ii) define the significance of nuclease in mouse models of planktonic versus biofilm infection;and (iii) compare the host inflammatory response to nuclease in planktonic versus biofilm infection. Finally, we speculate that small-molecule inducers of nuclease activity could serve as anti-biofilm therapeutics. Towards this end, in Specific Aim 3, we will employ new technology to generate cyclic peptide libraries in S. aureus that are amenable to high-throughput screening methods. More specifically, we will (i) screen for cyclic peptides that induce nuclease expression through FACS;(ii) perform molecular and biochemical studies to identify peptide targets;(iii) characterize the best candidates as dispersal agents in a biofilm infection model;and (iv) compare results to transposon mutants with increased nuclease activity. Overall, the goal of this Project is to understand how these S. aureus biofilm structures form and disassemble, the contribution of extracellular DNA to this process, and the relevance in disease.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-TS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Medical Center
United States
Zip Code
Lehman, McKenzie K; Bose, Jeffrey L; Sharma-Kuinkel, Batu K et al. (2015) Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression. Mol Microbiol 95:723-37
Hanamsagar, Richa; Aldrich, Amy; Kielian, Tammy (2014) Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem 129:704-11
Scherr, Tyler D; Lindgren, Kevin E; Schaeffer, Carolyn R et al. (2014) Mouse model of post-arthroplasty Staphylococcus epidermidis joint infection. Methods Mol Biol 1106:173-81
Heim, Cortney E; Vidlak, Debbie; Scherr, Tyler D et al. (2014) Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol 192:3778-92
Hernandez, Frank J; Huang, Lingyan; Olson, Michael E et al. (2014) Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe. Nat Med 20:301-6
Zurek, Oliwia W; Nygaard, Tyler K; Watkins, Robert L et al. (2014) The role of innate immunity in promoting SaeR/S-mediated virulence in Staphylococcus aureus. J Innate Immun 6:21-30
Kiedrowski, Megan R; Crosby, Heidi A; Hernandez, Frank J et al. (2014) Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLoS One 9:e95574
Sapp, April M; Mogen, Austin B; Almand, Erin A et al. (2014) Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus. PLoS One 9:e108868
Olson, Michael E; Todd, Daniel A; Schaeffer, Carolyn R et al. (2014) Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization. J Bacteriol 196:3482-93
Lindgren, J K; Thomas, V C; Olson, M E et al. (2014) Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol 196:2277-89

Showing the most recent 10 out of 48 publications