The aim of this project is to identify and characterize HIV-infected individuals from the CAPRISA 002 cohort with broadly neutralizing antibodies that target quaternary neutralization epitopes (QNE) on the HIV envelope. To date we have identified 2 such individuals from among the 28 so far studied (Dr Morris). One of these, CAP256 developed potent antibodies against QNE that included the V1V2 region (Dr Moore). Interestingly this individual was super-infected (Dr Williamson) and viral evolution studies will be performed to indentify the second infecting virus as well as the recombinant strains to ascertain their role in the development of these antibodies. As part of this project we anticipate identifying another 9 subjects with neutralizing antibodies that target QNE from among the additional 90 that will be screened. This will be done by performing neutralization assays on a large panel of multi-subtype pseudoviruses;those with >60% neutralization breadth and who do not have anti-gp120 or anti-MPER neutralizing antibodies will be considered as having antibodies against QNE. Envelope genes from selected time-points during the development of neutralization breadth will be sequenced and functional pseudotypes tested for neutralization sensitivity to identify putative sites. We will furthermore make use of chimeric and mutant viruses to identify neutralization escape mutations as a way of identifying the antibody targets. The fine mapping and structure of these QNE epitopes will be done in collaboration with Dr Pinter (Project 1). Monoclonal antibodies will be made from those individuals where the neutralizing activity is attributable to a single specificity by Dr James Robinson (Project 4). This information will be used to design immunogens that will be tested in animal models by Dr Shiu-lok (Project 3).

Public Health Relevance

The identification of new neutralizing antibody targets on the HIV envelope is a major priority for HIV vaccine research. The dearth of new mAbs defining neutralization targets has hindered progress but a number of recent advances suggest that we are entering a new era. New assays to map neutralizing antibody specificities and new more reliable approaches to isolate mAbs are now available. We are in a unique position to make significant contributions to identifying novel broadly neutralizing antibodies through the intensive and ongoing study of the CAPRISA cohort and the collaborations with Drs Pinter and Robinson

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI088610-06
Application #
8720669
Study Section
Special Emphasis Panel (ZAI1-RB-A)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
6
Fiscal Year
2014
Total Cost
$368,266
Indirect Cost
$75,700
Name
Rutgers University
Department
Type
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
07103
Salomon, Aidy; Krachmarov, Chavdar; Lai, Zhong et al. (2014) Specific sequences commonly found in the V3 domain of HIV-1 subtype C isolates affect the overall conformation of native Env and induce a neutralization-resistant phenotype independent of V1/V2 masking. Virology 448:363-74
Derdeyn, Cynthia A; Moore, Penny L; Morris, Lynn (2014) Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Curr Opin HIV AIDS 9:210-6
Moore, Penny L; Sheward, Daniel; Nonyane, Molati et al. (2013) Multiple pathways of escape from HIV broadly cross-neutralizing V2-dependent antibodies. J Virol 87:4882-94
Murphy, Megan K; Yue, Ling; Pan, Ruimin et al. (2013) Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth. PLoS Pathog 9:e1003173
Wibmer, Constantinos Kurt; Bhiman, Jinal N; Gray, Elin S et al. (2013) Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathog 9:e1003738
Sethi, Anurag; Tian, Jianhui; Derdeyn, Cynthia A et al. (2013) A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein. PLoS Comput Biol 9:e1003046
Moore, Penny L; Gray, Elin S; Sheward, Daniel et al. (2011) Potent and broad neutralization of HIV-1 subtype C by plasma antibodies targeting a quaternary epitope including residues in the V2 loop. J Virol 85:3128-41
Gray, Elin S; Madiga, Maphuti C; Hermanus, Tandile et al. (2011) The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J Virol 85:4828-40
Krachmarov, Chavdar; Lai, Zhong; Honnen, William J et al. (2011) Characterization of structural features and diversity of variable-region determinants of related quaternary epitopes recognized by human and rhesus macaque monoclonal antibodies possessing unusually potent neutralizing activities. J Virol 85:10730-40