Antigenic variation underlies a large number of the most critical problems now facing vaccine development. Influenza virus is an ideal subject for tackling this issue: it is the most variable pathogen against which we can effectively vaccinate, but its principal surface antigen varies so rapidly that new vaccines must be introduced almost yearly. We propose to use innovative analyses of B-cell repertoires and new possibilities in structural studies to understand the structural and immunological mechanisms underlying cross reactivity and immunodominance, as a foundation for designing immunogens that will elicit a more broadly neutralizing response than those currently in use. We will test the following three hypotheses, to which the three Aims of each Project correspond. (1) The B-cell repertoires elicited by inactivated vaccines and by infection differ in degree of polyclonal activation and breadth of neutralization;the repertoires elicited by immunization with adjuvanted and non-adjuvanted TIV differ because adjuvant increases the breadth of recognized epitopes. (2) Broadly reactive Abs, including those recognizing the heterosubtypic stem epitope, are less frequent after true primary than after secondary TIV immunization due to broadening of the response by multiple HA stimulations. (3) Efficient induction of Abs against a desired epitope requires: (a) proliferation of a favorable germline Ab and (b) an affinity maturation pathway to a desired final specificity;there are preferred germline precursors and maturation pathways for Abs targeting particular epitopes. The group of investigators that joins in this proposal brings together strengths in immunology, virology, structural biology, and vaccine development. The principal investigators have worked closely and effectively together in past collaborations.

Public Health Relevance

The work will have a significant impact on influenza vaccine development and for immunization against other pathogens with rapid antigenic variation. The project will also lead to a greatly improved understanding of the human immune response to vaccines and to the implementation of novel structural methods in virology and immunology.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-LR-I (M1))
Program Officer
Leitner, Wolfgang W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital Boston
United States
Zip Code
Liu, Yuhang; Pan, Junhua; Cai, Yongfei et al. (2017) Conformational States of a Soluble, Uncleaved HIV-1 Envelope Trimer. J Virol 91:
Liu, Yuhang; Pan, Junhua; Jenni, Simon et al. (2017) CryoEM Structure of an Influenza Virus Receptor-Binding Site Antibody-Antigen Interface. J Mol Biol 429:1829-1839
Raymond, Donald D; Stewart, Shaun M; Lee, Jiwon et al. (2016) Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nat Med 22:1465-1469
Kuraoka, Masayuki; Schmidt, Aaron G; Nojima, Takuya et al. (2016) Complex Antigens Drive Permissive Clonal Selection in Germinal Centers. Immunity 44:542-552
Schmidt, Aaron G; Do, Khoi T; McCarthy, Kevin R et al. (2015) Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site. Cell Rep 13:2842-50
Harrison, Stephen C (2015) Viral membrane fusion. Virology 479-480:498-507
Schmidt, Aaron G; Therkelsen, Matthew D; Stewart, Shaun et al. (2015) Viral receptor-binding site antibodies with diverse germline origins. Cell 161:1026-1034
Xu, Huafeng; Schmidt, Aaron G; O'Donnell, Timothy et al. (2015) Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage. Proteins 83:771-80
Jackson, Katherine J L; Liu, Yi; Roskin, Krishna M et al. (2014) Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe 16:105-14
Schmidt, Aaron G; Xu, Huafeng; Khan, Amir R et al. (2013) Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc Natl Acad Sci U S A 110:264-9

Showing the most recent 10 out of 12 publications