The overall goal of this project is to develop an attenuated rhesus cytomegalovirus-based vaccine against simian immunodeficiency virus (RhCMV/SIV) that is unable to replicate in cells and tissues associated with CMV transmission and disease. We have shown that live RhCMV/SIV is an effective vaccine that induces SIV protective immunity in rhesus macaques. In order to translate our findings into a human CMV (HCMV)/HIV vaccine that would be safe for all potential patients including immunocompromised individuals, the CMV vaccine vector needs to be attenuated without losing the ability to induce protective immunity. CMV can replicate in a wide variety of cells and tissues in the host, including: epithelial cells in glandular tissue (salivary glands and breast), lung, kidney, as well as hepatocytes in the liver and neurons in the central nervous system (CNS). Myeloid and endothelial cells are also considered persistent sites for CMV in the host. The overall goal of Project 2 is to modulate the ability of CMV to replicate in these critical cell types in order to increase safety without compromising vaccine efficacy. We hypothesize that elimination of all the epithelial cell tropic genes will reduce pathogenicity and eliminate viral shedding into saliva and urine. Therefore, in the first specific aim of this project, we will delete RhCMV epithelial cell tropism genes to further abrogate the ability of the virus to replicate in this cell type. As an additional method to attenuate the RhCMV/SIV vaccine, we will use a novel approach to inactivate virus in tissues associated with CMV disease and dissemination by using a microRNA-based strategy to specifically inactivate essential CMV genes during viral replication in CNS, liver, and myeloid cells. These RhCMV/SIV tropism deficient viruses will be analyzed for SIV immunogenicity and attenuation in rhesus macaques in Specific Aim 2. In the last specific aim, we will translate these findings into a human CMV/HIV vector that will be tested in a newly established humanized mouse model. These studies will result in the design of an HCMV/HIV vaccine that will be ready for clinical studies.

Public Health Relevance

Although investigators have been focused on the development of an effective vaccine for HIV since the emergence ofthe AIDS epidemic in the early 1980s, an effective HIV vaccine has been elusive. We have shown that a live cytomegalovirus (CMV) vector containing SIV antigens can effectively induce protective immunity in rhesus macaques. In order to design a CMV vector which retains efficacy, but is safe enough for general use in humans, we propose to determine whether genetically modifying CMV to limit its ability to replicate in cell types associated with disease and transmission, while retaining its ability to persist in cells important for eliciting immunity, will lead to a safe and effective vector for an HIV/AIDS vaccine.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
United States
Zip Code
Hansen, Scott G; Piatak Jr, Michael; Ventura, Abigail B et al. (2013) Immune clearance of highly pathogenic SIV infection. Nature 502:100-4
Hansen, Scott G; Sacha, Jonah B; Hughes, Colette M et al. (2013) Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340:1237874