The four dengue virus serotypes (DENV1-4) cause the most important mosquito-borne viral disease of humans, with ~400 million infections annually. The mechanisms by which the host immune response to DENV provides either protection or enhancement in a subsequent infection with a different DENV serotype are poorly understood, and this has been a major hindrance in vaccine development. The suboptimal results from the first proof-of-concept dengue vaccine efficacy trial highlight the critical need t better understand the immune response to natural DENV infections and vaccine candidates and to identify robust correlates of protection. This P01 Program applies state-of-the-art immunological methods in the context of long-term ongoing clinical and epidemiological studies of natural DENV infections in Nicaragua as well as Phase 2 and 3 vaccine trials of the Takeda tetravalent live-attenuated dengue vaccine (TV-LAV). We propose to study qualitative and quantitative features of B and T cell immune responses in humans under a coordinated P01 Program including three projects: 1) B cell and antibody responses to natural dengue virus infections; 2) B cell and antibody responses following live attenuated dengue virus vaccination; 3) T cell responses following DENV natural infections and live-attenuated dengue virus vaccination. The overall hypothesis is that DENV-nave and DENV-exposed individuals develop fundamentally different protective B and T cell responses upon exposure to a new DENV infection or live vaccine. Moreover, we posit that it is the quality as well as the quantity of neutralizing antibodies that determines protective efficacy. The P01 is highly synergistic in that samples from the same individuals and/or sample sets, as well as specific assays and methodologies, are being shared among the Projects, which are supported by an Administrative Core, Immunology Core, and Clinical & Data Management Core. The P01 also leverages a number of existing grants and contracts supporting dengue studies, vaccine trials, and epitope mapping programs. We have formed a Consortium of world-renowned investigators with extensive experience and on-going programs in dengue clinical, immunological, and virological research and vaccine development - thus ensuring a high-quality successful research program, especially since the investigators have a long history of productive collaboration (>190 joint publications). The P01 should result in: 1) Improved understanding of what constitutes protective adaptive immunity in 1 and 2 DENV infections and in nave and previously DENV-exposed recipients of a dengue TVLAV, which can inform future vaccine formulations; 2) Identification of natural and vaccine-induced B cell/antibody and CD4+/CD8+ T cell correlates of protection that can be used to assess existing and future vaccines; 3) Identification of potential therapeutic monoclonal antibodies and T cell peptide vaccines; and 4) Mapping of novel epitopes and generation of recombinant viruses that can serve as new epitope-specific diagnostic tools.

Public Health Relevance

Dengue is a major public health problem worldwide and is complicated by four distinct yet cross-reactive serotypes. This P01 addresses the critical need to improve understanding of the human B and T cell response to dengue virus infection and vaccination and to identify immune correlates of protection from disease. To this end, our consortium of world-renowned investigators is applying state-of-the-art immunological methods in the context of long-term ongoing clinical and epidemiological studies of dengue and Phase 2 and 3 trials of dengue vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
1P01AI106695-01A1
Application #
8854816
Study Section
Special Emphasis Panel (ZAI1-LR-M (J1))
Program Officer
Cassetti, Cristina
Project Start
2015-07-29
Project End
2020-06-30
Budget Start
2015-07-29
Budget End
2016-06-30
Support Year
1
Fiscal Year
2015
Total Cost
$2,106,690
Indirect Cost
$295,771
Name
University of California Berkeley
Department
Internal Medicine/Medicine
Type
Schools of Public Health
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Weiskopf, Daniela; Grifoni, Alba; Arlehamn, Cecilia S Lindestam et al. (2018) Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 339 adults from Managua, Nicaragua. Hum Immunol 79:1-2
Andrade, Daniela V; Harris, Eva (2018) Recent advances in understanding the adaptive immune response to Zika virus and the effect of previous flavivirus exposure. Virus Res 254:27-33
Tan, Yi; Pickett, Brett E; Shrivastava, Susmita et al. (2018) Differing epidemiological dynamics of Chikungunya virus in the Americas during the 2014-2015 epidemic. PLoS Negl Trop Dis 12:e0006670
Premkumar, Lakshmanane; Collins, Matthew; Graham, Stephen et al. (2018) Development of Envelope Protein Antigens To Serologically Differentiate Zika Virus Infection from Dengue Virus Infection. J Clin Microbiol 56:
Balmaseda, Angel; Zambrana, José Victor; Collado, Damaris et al. (2018) Comparison of Four Serological Methods and Two Reverse Transcription-PCR Assays for Diagnosis and Surveillance of Zika Virus Infection. J Clin Microbiol 56:
Katzelnick, Leah C; Ben-Shachar, Rotem; Mercado, Juan Carlos et al. (2018) Dynamics and determinants of the force of infection of dengue virus from 1994 to 2015 in Managua, Nicaragua. Proc Natl Acad Sci U S A 115:10762-10767
Frei, Julia C; Wirchnianski, Ariel S; Govero, Jennifer et al. (2018) Engineered Dengue Virus Domain III Proteins Elicit Cross-Neutralizing Antibody Responses in Mice. J Virol 92:
Mishra, Nischay; Caciula, Adrian; Price, Adam et al. (2018) Diagnosis of Zika Virus Infection by Peptide Array and Enzyme-Linked Immunosorbent Assay. MBio 9:
Thézé, Julien; Li, Tony; du Plessis, Louis et al. (2018) Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host Microbe 23:855-864.e7
Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy et al. (2018) Predicting HLA CD4 Immunogenicity in Human Populations. Front Immunol 9:1369

Showing the most recent 10 out of 54 publications