Core B supports every project within the Program by providing access to state-of-the-art RNAi tools. Short hairpin RNAs (shRNAs) were developed with the support of this program, and ongoing innovations by Core B and Program investigators have helped to make these extremely powerful biological tools. During the past funding period, the Core devised methods to rapidly engineer mice carrying regulated shRNA expression cassettes, devised strategies for functionally validating shRNAs in a multiplexed fashion, and created a third generation of RNAi libraries corresponding to annotated protein coding genes in humans and mice. During the upcoming period of requested support, the core proposes to aid Program investigators through five general aims. First, the program will continue to provide access to state-of-the-art RNAi tools for analyzing either single gene knockdowns or for performing pooled RNAi screens. Second, the Core will work with investigators to operate the "sensor assay" to identify optimal shRNAs tools against genes of interest. Third, the core will produce custom RNAi libraries against sets of genes that are of interest to Program investigators. Fourth, the Core will produce mice carrying regulated RNAi cassettes and aid investigators in combining these with other desired genetic lesions. Finally, the Core will carry on its efforts to improve RNAi technologies and make those innovations available to the Program and to the community at large.

Public Health Relevance

RNAi has become a mainstay of modern biology. Core B and investigators within this program project have continued to be world leaders in the development of shRNAs as powerful experimental tools. Thus, work within the Core impacts not only the Program but also the broader community.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cold Spring Harbor Laboratory
Cold Spring Harbor
United States
Zip Code
Chakraborty, A A; Scuoppo, C; Dey, S et al. (2015) A common functional consequence of tumor-derived mutations within c-MYC. Oncogene 34:2406-9
Mazurek, Anthony; Park, Youngkyu; Miething, Cornelius et al. (2014) Acquired dependence of acute myeloid leukemia on the DEAD-box RNA helicase DDX5. Cell Rep 7:1887-99
Huang, Chun-Hao; Lujambio, Amaia; Zuber, Johannes et al. (2014) CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes Dev 28:1800-14
Saborowski, Michael; Saborowski, Anna; Morris 4th, John P et al. (2014) A modular and flexible ESC-based mouse model of pancreatic cancer. Genes Dev 28:85-97
Fellmann, Christof; Lowe, Scott W (2014) Stable RNA interference rules for silencing. Nat Cell Biol 16:10-8
Jensen, Mads A; Wilkinson, John E; Krainer, Adrian R (2014) Splicing factor SRSF6 promotes hyperplasia of sensitized skin. Nat Struct Mol Biol 21:189-97
Weissmueller, Susann; Manchado, Eusebio; Saborowski, Michael et al. (2014) Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor ? signaling. Cell 157:382-94
Bolden, Jessica E; Tasdemir, Nilgun; Dow, Lukas E et al. (2014) Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep 8:1919-29
Chen, Chong; Liu, Yu; Rappaport, Amy R et al. (2014) MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25:652-65
Das, Shipra; Krainer, Adrian R (2014) Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res 12:1195-204

Showing the most recent 10 out of 509 publications