Project 2. Our working hypothesis in this Program is that chemical species generated by phagocytes at sites of inflammation represent a causative link to human disease. Within the themes of colitis, neutrophils and NO resistance shared across the Program, Project 2 focuses on reactions of the chemical mediators of inflammation with DNA, lipids, carbohydrates and proteins in epithelial cells to generate toxic products that lead to altered physiology, cell death and mutations associated with cancer. The objectives are to explore the mechanisms of this damage, to develop surrogate markers of the labile inflammatory mediators, and to develop candidate biomarkers of inflammation. In the last grant period, we developed analytical methods for DNA, RNA and protein damage products (with Core 1) and applied these methods to cultured cells (with Project 3) and to animal models of inflammation (with Projects 4, Core 2), with the goal of linking the chemical models developed in Project 1 with Projects 3 and 4. In the proposed studies, we will expand biomarker development to include DNA, RNA and protein damage products derived from lipid peroxidation and neutrophils, and quantify these markers in inflamed and cancerous human tissues.
The Specific Aims are as follow:
Aim 1. Define the spectrum of DNA, RNA and protein lesions produced by NO, N{2}O{3}, ONOO* and HOCI in isolated nucleic acids and cultured cells (with Projects 1, 3,4). We will develop analytical methods for DNA, RNA and protein damage products: chlorotyrosine, nitrotyrosine;halogenated nucleobases, guanine oxidation products;and RNA versions of all DNA lesions. These methods will then be applied to model cell systems with Projects 1, 3 and 4.
Aim 2. Apply methods and define lesion spectra in mouse models of inflammation (with Projects 1, 3, 4). We will establish the utility of biomarkers in animal models of inflammation and colitis with Project 4 and quantify DNA, RNA and protein lesions in tissues in coordination with other projects to develop predictive models for production of reactive nitrogen and halogen species.
Aim 3. Apply biomarker methods to inflamed and cancerous human tissues (with Projects 1,3, 4). The biomarkers will be translated to samples of normal human colon tissue and from patients with Crohn's disease and ulcerative colitis, with the goal of comparing the profiles from human and mouse models. We will also develop methods to analyze markers of NO and HOCI chemistry in archived paraffin blocks of melanoma tumors, with the goal of distinguishing the effects of NO derived from the melanoma cells per se, from those of the innate immune cells attacking the tumor.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA026731-34
Application #
8567214
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
2014-12-31
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
34
Fiscal Year
2013
Total Cost
$334,226
Indirect Cost
$134,540
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Gu, Chen; Ramos, Jillian; Begley, Ulrike et al. (2018) Phosphorylation of human TRM9L integrates multiple stress-signaling pathways for tumor growth suppression. Sci Adv 4:eaas9184
Wadduwage, Dushan N; Kay, Jennifer; Singh, Vijay Raj et al. (2018) Automated fluorescence intensity and gradient analysis enables detection of rare fluorescent mutant cells deep within the tissue of RaDR mice. Sci Rep 8:12108
Tajai, Preechaya; Fedeles, Bogdan I; Suriyo, Tawit et al. (2018) An engineered cell line lacking OGG1 and MUTYH glycosylases implicates the accumulation of genomic 8-oxoguanine as the basis for paraquat mutagenicity. Free Radic Biol Med 116:64-72
Rothenberg, Daniel A; Taliaferro, J Matthew; Huber, Sabrina M et al. (2018) A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. iScience 9:367-381
Wang, Xin; Garcia, Carlos T; Gong, Guanyu et al. (2018) Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols. Anal Chem 90:1967-1975
Chan, Cheryl; Pham, Phuong; Dedon, Peter C et al. (2018) Lifestyle modifications: coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses. Genome Biol 19:228
Fedeles, Bogdan I (2017) G-quadruplex-forming promoter sequences enable transcriptional activation in response to oxidative stress. Proc Natl Acad Sci U S A 114:2788-2790
Townsend, Todd A; Parrish, Marcus C; Engelward, Bevin P et al. (2017) The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status. Environ Mol Mutagen 58:508-521
Kimoto, Takafumi; Kay, Jennifer E; Li, Na et al. (2017) Recombinant cells in the lung increase with age via de novo recombination events and clonal expansion. Environ Mol Mutagen 58:135-145
Edrissi, Bahar; Taghizadeh, Koli; Moeller, Benjamin C et al. (2017) N6-Formyllysine as a Biomarker of Formaldehyde Exposure: Formation and Loss of N6-Formyllysine in Nasal Epithelium in Long-Term, Low-Dose Inhalation Studies in Rats. Chem Res Toxicol 30:1572-1576

Showing the most recent 10 out of 361 publications