Project 2. Our working hypothesis in this Program is that chemical species generated by phagocytes at sites of inflammation represent a causative link to human disease. Within the themes of colitis, neutrophils and NO resistance shared across the Program, Project 2 focuses on reactions of the chemical mediators of inflammation with DNA, lipids, carbohydrates and proteins in epithelial cells to generate toxic products that lead to altered physiology, cell death and mutations associated with cancer. The objectives are to explore the mechanisms of this damage, to develop surrogate markers of the labile inflammatory mediators, and to develop candidate biomarkers of inflammation. In the last grant period, we developed analytical methods for DNA, RNA and protein damage products (with Core 1) and applied these methods to cultured cells (with Project 3) and to animal models of inflammation (with Projects 4, Core 2), with the goal of linking the chemical models developed in Project 1 with Projects 3 and 4. In the proposed studies, we will expand biomarker development to include DNA, RNA and protein damage products derived from lipid peroxidation and neutrophils, and quantify these markers in inflamed and cancerous human tissues.
The Specific Aims are as follow:
Aim 1. Define the spectrum of DNA, RNA and protein lesions produced by NO, N{2}O{3}, ONOO* and HOCI in isolated nucleic acids and cultured cells (with Projects 1, 3,4). We will develop analytical methods for DNA, RNA and protein damage products: chlorotyrosine, nitrotyrosine;halogenated nucleobases, guanine oxidation products;and RNA versions of all DNA lesions. These methods will then be applied to model cell systems with Projects 1, 3 and 4.
Aim 2. Apply methods and define lesion spectra in mouse models of inflammation (with Projects 1, 3, 4). We will establish the utility of biomarkers in animal models of inflammation and colitis with Project 4 and quantify DNA, RNA and protein lesions in tissues in coordination with other projects to develop predictive models for production of reactive nitrogen and halogen species.
Aim 3. Apply biomarker methods to inflamed and cancerous human tissues (with Projects 1,3, 4). The biomarkers will be translated to samples of normal human colon tissue and from patients with Crohn's disease and ulcerative colitis, with the goal of comparing the profiles from human and mouse models. We will also develop methods to analyze markers of NO and HOCI chemistry in archived paraffin blocks of melanoma tumors, with the goal of distinguishing the effects of NO derived from the melanoma cells per se, from those of the innate immune cells attacking the tumor.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
United States
Zip Code
Chen, Fangyi; Tang, Qi; Bian, Ke et al. (2016) Adaptive Response Enzyme AlkB Preferentially Repairs 1-Methylguanine and 3-Methylthymine Adducts in Double-Stranded DNA. Chem Res Toxicol 29:687-93
Seneviratne, Uthpala; Nott, Alexi; Bhat, Vadiraja B et al. (2016) S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration. Proc Natl Acad Sci U S A 113:4152-7
Chang, Shiou-chi; Fedeles, Bogdan I; Wu, Jie et al. (2015) Next-generation sequencing reveals the biological significance of the N(2),3-ethenoguanine lesion in vivo. Nucleic Acids Res 43:5489-500
Shen, Zeli; Feng, Yan; Rickman, Barry et al. (2015) Helicobacter cinaedi induced typhlocolitis in Rag-2-deficient mice. Helicobacter 20:146-55
Fedeles, Bogdan I; Freudenthal, Bret D; Yau, Emily et al. (2015) Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer. Proc Natl Acad Sci U S A 112:E4571-80
Singh, Vipender; Fedeles, Bogdan I; Essigmann, John M (2015) Role of tautomerism in RNA biochemistry. RNA 21:1-13
Chan, Clement T Y; Deng, Wenjun; Li, Fugen et al. (2015) Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes. Chem Res Toxicol 28:978-88
Iverson, Nicole M; Strano, Michael S; Wogan, Gerald N (2015) In Vivo Delivery of Nitric Oxide-Sensing, Single-Walled Carbon Nanotubes. Curr Protoc Chem Biol 7:93-102
Zeiger, Errol; Gollapudi, Bhaskar; Aardema, Marilyn J et al. (2015) Opportunities to integrate new approaches in genetic toxicology: an ILSI-HESI workshop report. Environ Mol Mutagen 56:277-85
Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner et al. (2015) Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 11:e1004901

Showing the most recent 10 out of 346 publications