Cancer development requires alterations in the regulatory mechanisms that control cell proliferation, apoptosis and terminal differentiation. This project is centered on the retinoblastoma protein (pRB in humans, pRb in mouse) tumor suppressor. pRB plays a key role in each of these biological processes by directly regulating their underlying transcriptional programs. Numerous pRB-responsive mRNAs have been identified and more recent studies show a direct role for pRB in the regulation of miRNAs. However, it remains unclear how the various functions of pRB contribute to its tumor suppressive roles. This project (Project 3) will investigate the mechanisms that underlie two key pRb functions. Experiments in Aims 1 and 2 will determine how mlRNA regulation contributes to pRb's role in mesenchymal differentiation and tumorigenesis. The rationale for these studies is twofold. First, we have shown that pRb is a key determinant of mesenchymal specification, and that pRb loss promotes dedifferentiation and cellular plasticity. Second, in collaboration with Project 1, we have shown that Rb family loss causes the deregulation of both well-studied (e.g. the miR-17~92 cluster) and poorly characterized miRNAs that include candidate regulators of mesenchymal plasticity.
In Aim 1, we will use cell-based assays to determine the function of these pRb-regulated miRNAs including establishing the mechanism of their regulation by pRb, the identity of their targets and their roles in mesenchymal differentiation and pRb regulated plasticity.
In Aim 2, we will directly test how the miR-17~92 cluster, and miRNAs more broadly, influence the growth and plasticity of tumors arising in a mouse model of Rb mutant osteosarcoma. In parallel with these mesenchymal studies, we will investigate the mechanistic basis for pRb's pro-apoptotic role. We have shown that chemotherapeutic treatment promotes formation of a transcriptionally active pRb-E2F1 complex that selectively induces apoptotic genes. Our data suggest that post-translational modifications of both E2f 1 and pRB control the formation of this complex. Experiments in Aim 3 will use gain-of-function and loss-of-function mutants to establish how these post-translational modifications affect pRB and E2f1 's ability to regulate the mRNA and miRNA programs that underlie the roles of these proteins in apoptosis versus cell proliferation.

Public Health Relevance

It is well established that cancer development involves disruption of the regulatory mechanisms that control cell proliferation, apoptosis and terminal differentiation. The pRb tumor suppressor plays a key role in each of these processes. This research is directed at understanding the mechanistic basis for pRb's biological roles and it has the potential to provide new opportunities for diagnosis and treatment.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
United States
Zip Code
Zamudio, Jesse R; Kelly, Timothy J; Sharp, Phillip A (2014) Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156:920-34
Xue, Wen; Dahlman, James E; Tammela, Tuomas et al. (2014) Small RNA combination therapy for lung cancer. Proc Natl Acad Sci U S A 111:E3553-61
Wu, Xuebing; Scott, David A; Kriz, Andrea J et al. (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670-6
Xue, Wen; Chen, Sidi; Yin, Hao et al. (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380-4
Dimitrova, Nadya; Zamudio, Jesse R; Jong, Robyn M et al. (2014) LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 54:777-90
Yin, Hao; Xue, Wen; Chen, Sidi et al. (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551-3
Maynard, M A; Ferretti, R; Hilgendorf, K I et al. (2014) Bmi1 is required for tumorigenesis in a mouse model of intestinal cancer. Oncogene 33:3742-7
Gurtan, Allan M; Ravi, Arvind; Rahl, Peter B et al. (2013) Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts. Genes Dev 27:941-54
Leung, Anthony K L; Sharp, Phillip A (2013) Quantifying Argonaute proteins in and out of GW/P-bodies: implications in microRNA activities. Adv Exp Med Biol 768:165-82
Wu, Xuebing; Sharp, Phillip A (2013) Divergent transcription: a driving force for new gene origination? Cell 155:990-6

Showing the most recent 10 out of 177 publications