Acute infection by the small DNA tumor virus, SV40, can drive quiescent mammalian cells into the cell cycle. At least part of this work is performed by SV40 LT, one of the two viral oncoproteins. The rest is performed by the other oncoprotein, SV40 ST. The role of ST in this process depends upon its ability to interfere with the function of the protein phosphatase, PP2A, the product of a known human.tumor suppressing gene. Unexpectedly, at least part of the mechanism underlying SV40 ST perturbation of quiescence control is directed at events that occur in G2 (or G2/M). The process targeted by ST during G2 is PP2A- dependent and must be intact for cells to quiesce following mitogen deprivation initiated during the next G1 phase. Also involved is the p130/E2F4/DREAM complex, the integrity of which is PP2A dependent, This complex has been shown to operate in the maintenance of quiescence. Whether G2-centered PP2A function and/or PP2A function operating at another time(s) during the cell cycle communicates with this complex to license quiescence is unclear. The thrust of the proposed research is aimed at understanding 1) how, in molecular terms, the G2 quiescence control process operates, 2) whether its perturbation contributes to SV40 STdependent neoplastic transformation and tumorigenesis and 3), if this is the case, how its perturbation elicits these effects.

Public Health Relevance

The work proposed in this project focuses on one of the cardinal properties of normal cells-their ability to escape the cell cycle. Most cancer cells cannot escape the cell cycle, possibly adding to their ability to proliferate in an uncontrolled manner. By understanding why normal cells escape and cancer cells cannot, we hope to unearth a better appreciation for why tumors expand at various rates. Detailed molecular knowledge of this type will, ideally, create new cancer therapeutic opportunities.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA050661-23
Application #
8233033
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2011-04-01
Project End
2014-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
23
Fiscal Year
2011
Total Cost
$446,252
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Denis, Deborah; Rouleau, Cecile; Schaffhausen, Brian S (2017) A Transformation-Defective Polyomavirus Middle T Antigen with a Novel Defect in PI3 Kinase Signaling. J Virol 91:
Starrett, Gabriel J; Marcelus, Christina; Cantalupo, Paul G et al. (2017) Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma. MBio 8:
Cizmecioglu, Onur; Ni, Jing; Xie, Shaozhen et al. (2016) Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. Elife 5:
Rouleau, Cecile; Pores Fernando, Arun T; Hwang, Justin H et al. (2016) Transformation by Polyomavirus Middle T Antigen Involves a Unique Bimodal Interaction with the Hippo Effector YAP. J Virol 90:7032-45
Berrios, Christian; Jung, Joonil; Primi, Blake et al. (2015) Malawi polyomavirus is a prevalent human virus that interacts with known tumor suppressors. J Virol 89:857-62
Luo, Leo Y; Kim, Eejung; Cheung, Hiu Wing et al. (2015) The Tyrosine Kinase Adaptor Protein FRS2 Is Oncogenic and Amplified in High-Grade Serous Ovarian Cancer. Mol Cancer Res 13:502-9
White, Elizabeth A; Kramer, Rebecca E; Hwang, Justin H et al. (2015) Papillomavirus E7 oncoproteins share functions with polyomavirus small T antigens. J Virol 89:2857-65
Spurgeon, Megan E; Cheng, Jingwei; Bronson, Roderick T et al. (2015) Tumorigenic activity of merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice. Cancer Res 75:1068-79
Hettmer, Simone; Schinzel, Anna C; Tchessalova, Daria et al. (2015) Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. Elife 4:
Pores Fernando, A T; Andrabi, S; Cizmecioglu, O et al. (2015) Polyoma small T antigen triggers cell death via mitotic catastrophe. Oncogene 34:2483-92

Showing the most recent 10 out of 145 publications