The unifying feature of this Program Project remains its long-standing bench to bedside approach: to gain an increased understanding of photodynamic therapy (PDT) mechanisms and to translate it into optimized treatment. The unifying hypothesis is that the full potential of PDT of cancer cannot be realized without a comprehensive understanding of the interaction of the diverse mechanisms of molecular and cellular PDT responses. This Program Project has exceptionally broad, multidisciplinary expertise and is uniquely qualified to attempt to develop such a comprehensive view. The specific goals are: (i) The discovery and preclinical development of photoactivatable agents that lack prolonged general phototoxicity and provide a greater degree of efficacy and selectivity for treatment as well as diagnosis;(ii) The discovery of molecular and cellular mechanisms that can be translated into the design of improved photosensitizers and the rational design of combination therapies;(iii) The further development, translation and clinical application of our discovery that PDT and PDT generated anti-tumor vaccines can stimulate the adaptive anti-cancer immune response to support the local PDT effect with a systemic attack on the malignant tissue;(iv) The development of novel approaches to the treatment of non-melanoma skin cancer and H&N cancer. Five individual research projects will address the following questions: 1) Can we design and develop novel photosensitizing and imaging agents based on pyropheophorbides (HPPH;665 nm), purpurinimides (700 nm) and bacterio-purpurinimides (800 nm) that exhibit high efficacy and selectivity? 2) Can we identify regulatory pathways that are relevant in determining post-PDT survival of tumor cells and assess the impact of therapeutic interference with these pathways in controlling recurrence of tumor cell growth? 3) Can we understand the mechanisms by which PDT enhanced inflammation augments anti-tumor immunity and translate our findings to the clinic to enhance anti-tumor immunity and combat secondary disease? 4) Can we optimize the ALA-PDT treatment of non-melanoma skin cancer by choosing appropriate treatment strategies that consider perfusion and intra-tumor vascular and photosensitizer distributions, understanding mechanisms and constructing computational models for PDT? Can we enhance tumor control through addition of immune modulators and vaccination of patients with PDT treated cells? 5) Is PDT with the second generation photosensitize HPPH equal or superior to porfimer sodium PDT in controlling early cancer of the oral cavity and larynx, while sparing patients protracted sun avoidance? Can biomarkers be identified that correlate with treatment outcome? The projects are supported by three scientific cores and an Administrative Core.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P (O1))
Program Officer
Wong, Rosemary S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Roswell Park Cancer Institute Corp
United States
Zip Code
Shafirstein, Gal; Battoo, Athar; Harris, Kassem et al. (2016) Photodynamic Therapy of Non-Small Cell Lung Cancer. Narrative Review and Future Directions. Ann Am Thorac Soc 13:265-75
Shafirstein, Gal; Rigual, Nestor R; Arshad, Hassan et al. (2016) Photodynamic therapy with 3-(1'-hexyloxyethyl) pyropheophorbide-a for early-stage cancer of the larynx: Phase Ib study. Head Neck 38 Suppl 1:E377-83
James, Nadine S; Joshi, Penny; Ohulchanskyy, Tymish Y et al. (2016) Photosensitizer (PS)-cyanine dye (CD) conjugates: Impact of the linkers joining the PS and CD moieties and their orientation in tumor-uptake and photodynamic therapy (PDT). Eur J Med Chem 122:770-85
Brackett, Craig M; Kojouharov, Bojidar; Veith, Jean et al. (2016) Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8+ T-cell axis. Proc Natl Acad Sci U S A 113:E874-83
Dhillon, Samjot Singh; Demmy, Todd L; Yendamuri, Sai et al. (2016) A Phase I Study of Light Dose for Photodynamic Therapy Using 2-[1-Hexyloxyethyl]-2 Devinyl Pyropheophorbide-a for the Treatment of Non-Small Cell Carcinoma In Situ or Non-Small Cell Microinvasive Bronchogenic Carcinoma: A Dose Ranging Study. J Thorac Oncol 11:234-41
Rohrbach, Daniel J; Rigual, Nestor; Arshad, Hassan et al. (2016) Intraoperative optical assessment of photodynamic therapy response of superficial oral squamous cell carcinoma. J Biomed Opt 21:18002
Jenkins, Samir V; Srivatsan, Avinash; Reynolds, Kimberly Y et al. (2016) Understanding the interactions between porphyrin-containing photosensitizers and polymer-coated nanoparticles in model biological environments. J Colloid Interface Sci 461:225-31
Patel, Nayan J; Chen, Yihui; Joshi, Penny et al. (2016) Effect of Metalation on Porphyrin-Based Bifunctional Agents in Tumor Imaging and Photodynamic Therapy. Bioconjug Chem 27:667-80
Baran, Timothy M (2016) Recovery of optical properties using interstitial cylindrical diffusers as source and detector fibers. J Biomed Opt 21:77001
Ito, Fumito; Ku, Amy W; Bucsek, Mark J et al. (2015) Immune Adjuvant Activity of Pre-Resectional Radiofrequency Ablation Protects against Local and Systemic Recurrence in Aggressive Murine Colorectal Cancer. PLoS One 10:e0143370

Showing the most recent 10 out of 157 publications