The purpose of this new, reorganized Core is to provide physics, optical imaging and spectroscopy, and mathematical modeling support for the PPG. In so doing, we anticipate that new methods and approaches will be developed in close connection to the specific aims of the 5 individual projects. Optics is of course a critical element of PDT, and optical dosimetry has been a theme of the Core from the beginning. The new scientific emphasis of the Core builds on the realization that there are significant opportunities to exploit advances in biomedical optics within the context of preclinical and clinical PDT. Because of its long tradition of bringing PDT from the laboratory to the clinic, Roswell Park Cancer Institute (RPCI) is perhaps uniquely situated in the United States to make breakthroughs in this area. Exciting opportunities exist on several levels. For example, the lesions treated by PDT are necessarily optically accessible, and this enables integration of optical spectroscopic monitoring with the delivery of PDT. The photosensitizers used in PDT fluoresce, and this renders them directly detectable via fluorescence imaging in cells and in vivo. Advances in molecular imaging strategies have made it possible to image therapy-induced gene expression, tumor and normal tissue vasculature, and host cell responses to treatment in vivo at subcellular resolution. Important advances in understanding the various factors that contribute to the microscopic deposition of photodynamic dose have led to the development of new and very powerful mathematical models of PDT dosimetry, which have the capability of informing and being informed by ongoing and planned clinical trials. An additional important role for the Core is to continue to provide outstanding technical support for the preclinical and clinical laser and fiber delivery systems that are integral to each of the projects.
The specific aims of the Optical Spectroscopy, Molecular Imaging, and Dosimetry Modeling Core are: 1) To continue to provide technical and scientific support for the clinical instrument that integrates PDT delivery with fluorescence and reflectance spectroscopy;2) To develop in vivo molecular imaging methods in close connection to all projects;3) To utilize a new model of microscopic PDT dosimetry to inform the design and interpretation of clinical trials;and 4) To provide routine engineering and optics support for the clinical and preclinical research efforts of the PPG.

Public Health Relevance

Photodynamic therapy (PDT) is an emerging treatment already approved by the US FDA for several cancers and pre-cancers. The Program Project studies means of further optimizing this therapy by developing new photosensitizing drugs, exploring the mechanisms by which the therapy eradicates tumors, and by pursuing important new clinical trials. This Core provides critical optics support to the 5 projects of the Program.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Roswell Park Cancer Institute Corp
United States
Zip Code
Baran, Timothy M; Foster, Thomas H (2014) Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy. Med Phys 41:022701
Lai, Jinhuo; Cai, Qian; Biel, Merrill A et al. (2014) Id1 and NF-?B promote the generation of CD133+ and BMI-1+ keratinocytes and the growth of xenograft tumors in mice. Int J Oncol 44:1481-9
Rohrbach, Daniel J; Muffoletto, Daniel; Huihui, Jonathan et al. (2014) Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging. Acad Radiol 21:263-70
Rigual, Nestor; Shafirstein, Gal; Cooper, Michele T et al. (2013) Photodynamic therapy with 3-(1'-hexyloxyethyl) pyropheophorbide a for cancer of the oral cavity. Clin Cancer Res 19:6605-13
James, Nadine S; Chen, Yihui; Joshi, Penny et al. (2013) Evaluation of polymethine dyes as potential probes for near infrared fluorescence imaging of tumors: part - 1. Theranostics 3:692-702
Zeitouni, Nathalie C; Paquette, Anne D; Housel, Joseph P et al. (2013) A retrospective review of pain control by a two-step irradiance schedule during topical ALA-photodynamic therapy of non-melanoma skin cancer. Lasers Surg Med 45:89-94
Mitra, Soumya; Modi, Kshitij D; Foster, Thomas H (2013) Enzyme-activatable imaging probe reveals enhanced neutrophil elastase activity in tumors following photodynamic therapy. J Biomed Opt 18:101314
Ethirajan, Manivannan; Chen, Ping; Ohulchanskyy, Tymish Y et al. (2013) Regioselective synthesis and photophysical and electrochemical studies of 20-substituted cyanine dye-purpurinimide conjugates: incorporation of Ni(II) into the conjugate enhances its tumor-uptake and fluorescence-imaging ability. Chemistry 19:6670-84
Rigual, Nestor R; Shafirstein, Gal; Frustino, Jennifer et al. (2013) Adjuvant intraoperative photodynamic therapy in head and neck cancer. JAMA Otolaryngol Head Neck Surg 139:706-11
Brackett, Craig M; Muhitch, Jason B; Evans, Sharon S et al. (2013) IL-17 promotes neutrophil entry into tumor-draining lymph nodes following induction of sterile inflammation. J Immunol 191:4348-57

Showing the most recent 10 out of 131 publications