The Cell Analysis and Specimen Banking Core is designed to support the clinical and basic science projects by centralizing common procedures (Aim 1) and centralizing tissue and specimen banking procedures (Aim 2). These include sample acquisition, processing, characterization, banking, and distribution;cell sorting;and analytical flow cytometry. The Myeloma Institute for Research and Therapy (MIRT) annually treats nearly 5,000 patients from across the US and the world. From this extensive patient base, Core B banks thousands of patient specimens, many of which are serially collected throughout the course of a patient's disease and treatment. Centralized sample acquisition and storage, together with enhanced database capabilities, is a tremendous resource for program project investigators, as well as a highly efficient operation. It will allow us to track samples and maintain records of expected data for each sample used, thus increasing the efficiency of data collection for all projects. These activities of the core will be enhanced by a constantly updated integrated database. A priority list for sample distribution will be established by the Core Oversight Committee, composed of the program PI and Project Leaders, and will be updated periodically to accommodate requirements of the different projects, such as cell numbers, sample type, and patient characteristics. This mechanism will greatly increase the efficiency of sample utilization by the different projects. A centralized sample processing service will avoid the need to establish the procedures in each investigator's laboratory, providing for uniform procedures and efficient use of materials. The flow cytometry and cell-sorting services offered will provide state-of-the-art support to the projects in this program application, which will be augmented by the expertise of core personnel.

Public Health Relevance

Core B is a service core and its impact relates to the relevance of the projects and the program it serves. By offering sample acquisition, processing, distribution, and specimen banking, Core B provides uniformity of procedures and patient specimen resources to all projects in this P01

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arkansas for Medical Sciences
Little Rock
United States
Zip Code
Johnson, Sarah K; Stewart, James P; Bam, Rakesh et al. (2014) CYR61/CCN1 overexpression in the myeloma microenvironment is associated with superior survival and reduced bone disease. Blood 124:2051-60
Dhodapkar, Madhav V; Sexton, Rachael; Waheed, Sarah et al. (2014) Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood 123:78-85
Lapteva, Natalia; Szmania, Susann M; van Rhee, Frits et al. (2014) Clinical grade purification and expansion of natural killer cells. Crit Rev Oncog 19:121-32
Bam, R; Venkateshaiah, S U; Khan, S et al. (2014) Role of Bruton's tyrosine kinase (BTK) in growth and metastasis of INA6 myeloma cells. Blood Cancer J 4:e234
Papanikolaou, X; Rosenbaum, E R; Tyler, L N et al. (2014) Hematopoietic progenitor cell collection after autologous transplant for multiple myeloma: low platelet count predicts for poor collection and sole use of resulting graft enhances risk of myelodysplasia. Leukemia 28:888-93
Sawyer, Jeffrey R; Tian, Erming; Heuck, Christoph J et al. (2014) Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood 123:2504-12
Tian, Erming; Sawyer, Jeffrey R; Heuck, Christoph J et al. (2014) In multiple myeloma, 14q32 translocations are nonrandom chromosomal fusions driving high expression levels of the respective partner genes. Genes Chromosomes Cancer 53:549-57
Waheed, Sarah; Mitchell, Alan; Usmani, Saad et al. (2013) Standard and novel imaging methods for multiple myeloma: correlates with prognostic laboratory variables including gene expression profiling data. Haematologica 98:71-8
Lamy, Laurence; Ngo, Vu N; Emre, N C Tolga et al. (2013) Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 23:435-49
Sousa, Mirta M L; Zub, Kamila Anna; Aas, Per Arne et al. (2013) An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells. PLoS One 8:e55493

Showing the most recent 10 out of 227 publications