Immune deficiency causes significant morbidity and mortality in hematopoietic cell transplant (HCT) recipients. The clinical significance is especially evident when utilizing high doses of cytotoxic conditioning, donor HSC sources that are HLA-mismatched or contain low numbers of mature T lymphocytes, as would be the case with umbilical cord blood (UCB) transplants. We have observed a high incidence of severe or fatal intracellular and DNA viral (CMV;EBV;HHV6;adenovirus) infections in UCB transplant recipients. A major cause is loss of thymopoietic capacity, and impaired T cell recovery as a result of age, chemoradiotherapy or graft-versus-host-disease. Thymopoiesis depends on the interaction of the thymic stroma-derived receptors and ligands. Damage to thymic epithelial cells (TECs) by pre-transplant conditioning impairs the generation of mature T cells following transplant and predisposes the recipient to infections. Our central hypothesis is that thymic microenvironmental injury is the major limiting factor for slow T cell reconstitution and function in UCB transplant recipients, indicated by the predisposition for late infections. TEC differentiation, proliferation, and survival are controlled by both cell intrinsic and extrinsic factors. Thymocyte precursors and TECs engage in """"""""cross-talk"""""""" such that bidirectional signaling mechanisms provided by and to both thymocytes and TECs are essential for their mutual proliferation and survival. Our preliminary data in mice indicate that there is a direct correlation between the number of mature thymocytes and TECs, especially those located in the thymic medulla, which serves as the primary site of negative selection and thymic egress into the periphery. With the operational hypothesis that the rapidity of recovery of effective thymopoiesis is limited both by ineffective :TEC cross-talk (aim 1) and the relative paucity of endogenous TECs that escape conditioning regimens (aims 1, 2). We will pursue two approaches (specific aims) to overcome the quantitative and qualitative defect in TEC support of thymopoiesis.
Aim 1. To determine whether TEC regeneration and thymopoietic recovery is limited by inadequate cross-talk between thymocyte precursors and TECs post-HSCT.
Aim 2. To devise and test novel TEC replacement strategies based upon TEC developmental cues and using inducible pluripotent stem cell technology.

Public Health Relevance

Our goal is to develop clinically relevant approaches to prevent the profound T cell immune deficiency that occurs post-transplant in young and especially aged recipients of UCB grafts. This is a major source of morbidity and mortality post-transplant limiting the more widespread use of this methodology for the treatment of malignant and non-malignant disorders.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA065493-18
Application #
8379410
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
18
Fiscal Year
2012
Total Cost
$342,698
Indirect Cost
$103,671
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Bunting, Mark D; Varelias, Antiopi; Souza-Fonseca-Guimaraes, Fernando et al. (2017) GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity. Blood 129:630-642
Smith, Michelle J; Reichenbach, Dawn K; Parker, Sarah L et al. (2017) T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2:
Kean, Leslie S; Turka, Laurence A; Blazar, Bruce R (2017) Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 276:192-212
Barker, Juliet N; Kurtzberg, Joanne; Ballen, Karen et al. (2017) Optimal Practices in Unrelated Donor Cord Blood Transplantation for Hematologic Malignancies. Biol Blood Marrow Transplant 23:882-896
He, Fiona; Cao, Qing; Lazaryan, Aleksandr et al. (2017) Allogeneic Hematopoietic Cell Transplantation for Older Patients: Prognosis Determined by Disease Risk Index. Biol Blood Marrow Transplant 23:1485-1490
Webber, Beau R; O'Connor, Kyle T; McElmurry, Ron T et al. (2017) Rapid generation of Col7a1-/- mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. Lab Invest 97:1218-1224
Fair, C; Shanley, R; Rogosheske, J et al. (2017) BEAM conditioning is well-tolerated and yields similar survival in obese and non-obese patients with lymphoma: no requirement for weight-based dose modifications. Bone Marrow Transplant 52:491-493
Skvarova Kramarzova, Karolina; Osborn, Mark J; Webber, Beau R et al. (2017) CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int J Mol Sci 18:
Pourhassan, H; DeFor, T; Trottier, B et al. (2017) MDS disease characteristics, not donor source, predict hematopoietic stem cell transplant outcomes. Bone Marrow Transplant 52:532-538
Kamphorst, Alice O; Wieland, Andreas; Nasti, Tahseen et al. (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:1423-1427

Showing the most recent 10 out of 353 publications