During the current funding period we demonstrated the significant anti-leukemic potential of adoptively transferred adult NK cells by effecting complete remissions in patients with advanced AML. This project will include novel clinical trials designed to improve techniques exploiting NK cell alloreactivity in umbilical cord blood (UCB) transplants as well as in vitro and murine experiments to characterize the mechanisms supporting the expansion and education of NK cells derived from adult blood and from UCB progenitors. In SA1, we will perform a series of clinical trials assessing the efficacy of IL-2 administration to enhance in vivo NK cell expansion and education in an adult NK cell adoptive transfer/T cell depleted UCB transplantation strategy. We have generated in vitro data suggesting an important effect of IL-15 on NK cell expansion and differentiation. Clinical grade IL-15 has recently been made available to us by the NCI, and we will next substitute IL-15 for IL-2 in the first human trial to test the ability of IL-15 to facilitate education of engrafting NK cells after UCB transplant. A third clinical trial will test the hypothesis that adoptive transfer of >10 fold higher doses of ex vivo expanded adult NK cells will further enhance efficacy. In SA2 we will monitor the receptor repertoires, function and education of NK cells expanding in patients exposed to IL-2 or IL-15, after Treg infusion from the UCB transplant trials in Project 1 (Wagner), and in transplant recipients responding to viral stress. We will also use pre-clincial in vitro assays and a murine model in which adult human NK cells and UCB progenitors are transferred into NOD SCID IL2Rgamma-c-null immunodeficient mice to test novel strategies to enhance NK cell function. Specifically, we will test methods to enhance the anti-leukemic function of NK cells with potential for translation into clinical trials. We will test trans-presentation of IL-15 using lL-15Ra-Fc, ex vivo NK cell expansion using IL-15Ra+ artificial K562 cell stimulator cells (? Notch ligand or41BB ligand), and techniques to tailor the allo-reactive specificity of ex vivo expanded NK cells by culture with K562 stimulators expressing single Bw4, C1 or C2 KIR ligands. Ultimately, the best strategy from this series of clinical trials designed to optimize the anti-leukemic effect of NK cells will be combined with the clinical methods to enhance immune reconstitution and minimize GVHD developed in Project 1 and in Project 2.

Public Health Relevance

Patients with advanced AML often die of their disease and have no curative treatment options. We hypothesize that the persistence, expansion and function of NK cells after adoptive transfer will correlate with efficacy. Optimizing NK cell therapy with umbilical cord transplant has the potential to offer new therapies to patients and change transplant platforms to improve treatment outcomes for cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA065493-18
Application #
8379412
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
18
Fiscal Year
2012
Total Cost
$305,687
Indirect Cost
$103,671
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Bunting, Mark D; Varelias, Antiopi; Souza-Fonseca-Guimaraes, Fernando et al. (2017) GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity. Blood 129:630-642
Smith, Michelle J; Reichenbach, Dawn K; Parker, Sarah L et al. (2017) T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2:
Kean, Leslie S; Turka, Laurence A; Blazar, Bruce R (2017) Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 276:192-212
Barker, Juliet N; Kurtzberg, Joanne; Ballen, Karen et al. (2017) Optimal Practices in Unrelated Donor Cord Blood Transplantation for Hematologic Malignancies. Biol Blood Marrow Transplant 23:882-896
He, Fiona; Cao, Qing; Lazaryan, Aleksandr et al. (2017) Allogeneic Hematopoietic Cell Transplantation for Older Patients: Prognosis Determined by Disease Risk Index. Biol Blood Marrow Transplant 23:1485-1490
Webber, Beau R; O'Connor, Kyle T; McElmurry, Ron T et al. (2017) Rapid generation of Col7a1-/- mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. Lab Invest 97:1218-1224
Fair, C; Shanley, R; Rogosheske, J et al. (2017) BEAM conditioning is well-tolerated and yields similar survival in obese and non-obese patients with lymphoma: no requirement for weight-based dose modifications. Bone Marrow Transplant 52:491-493
Skvarova Kramarzova, Karolina; Osborn, Mark J; Webber, Beau R et al. (2017) CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int J Mol Sci 18:
Pourhassan, H; DeFor, T; Trottier, B et al. (2017) MDS disease characteristics, not donor source, predict hematopoietic stem cell transplant outcomes. Bone Marrow Transplant 52:532-538
Kamphorst, Alice O; Wieland, Andreas; Nasti, Tahseen et al. (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:1423-1427

Showing the most recent 10 out of 353 publications