The aim of this core is to use a xenotransplantation murine model to provide in vivo readouts for experiments proposed in this program project. Specifically, this model will be used for the following purposes: 1. To optimize proliferation and function of T regulatory cells (Treg) for suppression of alloreactive responses. 2. To perform studies testing the hypothesis that human thymocyte progenitor cells (Tprog) will accelerate human thymopoiesis and peripheral blood T cell responses in immunodeficient mice. 3. To optimize proliferation and function of natural killer (NK) cells for leukemia therapy. These data will in turn inform the design of future clinical trials. The core leader will provide valuable knowledge of the stem cell biology, gene manipulations, murine models, and clinical hematopoietic cell transplantation, all relevant to this application. Core D is unique in its capability to allow two of the three Principal Investigators (who do not have access to preclinical murine models;Project 1 and 3) with a critical shared resource to enhance their scientific program.

Public Health Relevance

Our overall goal is to enhance beneficial effects of cord blood transplantation using subpopulations of immune cells for enhanced lympho-hematopoietic recovery in humanized mice. Investigators in Core D will receive T regulatory, T progenitor and NK cells from investigators in Project 1, 2, and 3, respectively, and evaluate them in immunodeficient mice. These in vivo readouts of cord blood hematopoietic stem cells and additional subsets of human cells will then inform the design of clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
3P01CA065493-18S1
Application #
8533750
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
18
Fiscal Year
2012
Total Cost
$9,295
Indirect Cost
$3,180
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Bejanyan, Nelli; Brunstein, Claudio G; Cao, Qing et al. (2018) Delayed immune reconstitution after allogeneic transplantation increases the risks of mortality and chronic GVHD. Blood Adv 2:909-922
Bachanova, Veronika; Sarhan, Dhifaf; DeFor, Todd E et al. (2018) Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells. Cancer Immunol Immunother 67:483-494
Xing, Yan; Smith, Michelle J; Goetz, Christine A et al. (2018) Thymic Epithelial Cell Support of Thymopoiesis Does Not Require Klotho. J Immunol 201:3320-3328
Prestipino, Alessandro; Emhardt, Alica J; Aumann, Konrad et al. (2018) Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med 10:
de Witte, Moniek A; Sarhan, Dhifaf; Davis, Zachary et al. (2018) Early Reconstitution of NK and ?? T Cells and Its Implication for the Design of Post-Transplant Immunotherapy. Biol Blood Marrow Transplant 24:1152-1162
Zeiser, Robert; Blazar, Bruce R (2018) Acute Graft-versus-Host Disease. N Engl J Med 378:586
Blazar, Bruce R; MacDonald, Kelli P A; Hill, Geoffrey R (2018) Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood 131:2651-2660
Rothenberger, Meghan; Wagner, John E; Haase, Ashley et al. (2018) Transplantation of CCR5?32 Homozygous Umbilical Cord Blood in a Child With Acute Lymphoblastic Leukemia and Perinatally Acquired HIV Infection. Open Forum Infect Dis 5:ofy090
Lu, Yunjie; Gao, Ji; Zhang, Shaopeng et al. (2018) miR-142-3p regulates autophagy by targeting ATG16L1 in thymic-derived regulatory T cell (tTreg). Cell Death Dis 9:290
Cichocki, Frank; Wu, Cheng-Ying; Zhang, Bin et al. (2018) ARID5B regulates metabolic programming in human adaptive NK cells. J Exp Med 215:2379-2395

Showing the most recent 10 out of 395 publications