The progression of a cancer from the initiating cancer stem cell (CSC) to clinical significance, and ultimately to recurrence after treatment failure, is the culmination of a continuously evolving reciprocal interaction between the CSC and the "stem cell niche". The hypothesis of this proposal is that androgen deprivation perturbs the critical role of the prostate endothelial cell in regulation of the androgenic milieu of the prostate tissue microenvironment, and in regulation of the stem cell "niche", facilitating/accelerating the emergence of castration-recurrent prostate cancer To validate the hypothesis, the following Specific Aims are proposed.
Aim 1 will characterize the role of endothelial cell caveolae in transcytosis of circulating androgens across the endothelial cell barrier, in endocytosis of circulating androgens resulting in AR-transactivation of genes associated with endothelial cell homeostasis and signaling, and in "non-genomic signaling" mediated through cell surface receptors for circulating androgens.
Aim 2 will determine if androgen-deprivation induced killing of prostate endothelial cells results in transient, or irreversible, perturbation of the endothelial cells of the prostate microvasculature resulting in dysregulation of the tissue androgenic milieu (characterized using LC/MS/MS) and in creation/unmasking of unique, targetable "epitopes" or "vascular addresses" (characterized using phage peptide-display technology).
Aim 3 will identify the effect of androgen deprivation on genes and gene pathways that are differentially expressed in prostate CSCs compared to adult stem cells (ASCs), identify the cell surface "epitope" fingerprint of prostate ASCs/CSCs, and determine if perturbation of the stem cell "niche" results in epigenetically-modulated dysregulation of the HNF-4(square) transcription network in prostate CSCs. The data and reagents generated in Aims 1-3 will support the studies of Aim 4 focused on development of novel approaches for utilizing androgen-deprivation to enable prostate-specific therapies by validating that: androgen deprivation exposes the ASC/CSC to targeted therapy;transcytosis of circulating androgens can be inhibited without perturbation of endothelial cell homeostasis;and endothelial cell initiated signaling to ASCs/CSCs can be reprogrammed to induce the stem cell to exit the "niche" and commit to differentiation.

Public Health Relevance

Androgen deprivation therapy (ADT) has been the standard-of-care for advanced prostate cancer (CaP) for 60 years, but rarely is curative and has significant side-effects. This project proposes 2 complementary using strengths of ADT. First, transient ADT will expose the inaccessible CaP stem cell to short-term targeted therapy. Second, movement of circulating androgens across the micro-vascular barrier will be blocked by inhibiting endothelial cell-mediated androgen transport, a prostate-specific ADT, to prevent access of circulating adrenal androgens to CaP to minimize systemic collateral side effects.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Frasinyuk, Mykhaylo S; Mrug, Galyna P; Bondarenko, Svitlana P et al. (2016) Antineoplastic Isoflavonoids Derived from Intermediate ortho-Quinone Methides Generated from Mannich Bases. ChemMedChem 11:600-11
Montecinos, Viviana P; Morales, Claudio H; Fischer, Thomas H et al. (2015) Selective targeting of bioengineered platelets to prostate cancer vasculature: new paradigm for therapeutic modalities. J Cell Mol Med 19:1530-7
Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F et al. (2015) Androgen receptor in human endothelial cells. J Endocrinol 224:R131-7
Payne Ondracek, Rochelle; Cheng, Jinrong; Gangavarapu, Kalyan J et al. (2015) Impact of devascularization and tissue procurement on cell number and RNA integrity in prostatectomy tissue. Prostate 75:1910-5
Minges, John T; Grossman, Gail; Zhang, Ping et al. (2015) Post-translational Down-regulation of Melanoma Antigen-A11 (MAGE-A11) by Human p14-ARF Tumor Suppressor. J Biol Chem 290:25174-87
Koulikov, Dmitry; Mohler, Maura C; Mehedint, Diana C et al. (2014) Low detectable prostate specific antigen after radical prostatectomy--treat or watch? J Urol 192:1390-6
Wilton, John H; Titus, Mark A; Efstathiou, Eleni et al. (2014) Androgenic biomarker prof|ling in human matrices and cell culture samples using high throughput, electrospray tandem mass spectrometry. Prostate 74:722-31
Heemers, Hannelore V; Mohler, James L (2014) Words of wisdom. Re: Activity of cabazitaxel in castration-resistant prostate cancer progressing after docetaxel and next-generation endocrine agents. Eur Urol 66:597
Kim, Won; Zhang, Li; Wilton, John H et al. (2014) Sequential use of the androgen synthesis inhibitors ketoconazole and abiraterone acetate in castration-resistant prostate cancer and the predictive value of circulating androgens. Clin Cancer Res 20:6269-76
Tan, Jiann-an; Bai, Suxia; Grossman, Gail et al. (2014) Mechanism of androgen receptor corepression by CKβBP2/CRIF1, a multifunctional transcription factor coregulator expressed in prostate cancer. Mol Cell Endocrinol 382:302-13

Showing the most recent 10 out of 95 publications