The progression of a cancer from the initiating cancer stem cell (CSC) to clinical significance, and ultimately to recurrence after treatment failure, is the culmination of a continuously evolving reciprocal interaction between the CSC and the

Public Health Relevance

Androgen deprivation therapy (ADT) has been the standard-of-care for advanced prostate cancer (CaP) for 60 years, but rarely is curative and has significant side-effects. This project proposes 2 complementary using strengths of ADT. First, transient ADT will expose the inaccessible CaP stem cell to short-term targeted therapy. Second, movement of circulating androgens across the micro-vascular barrier will be blocked by inhibiting endothelial cell-mediated androgen transport, a prostate-specific ADT, to prevent access of circulating adrenal androgens to CaP to minimize systemic collateral side effects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA077739-14
Application #
8470596
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
14
Fiscal Year
2013
Total Cost
$158,209
Indirect Cost
$13,855
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Li, Qiuhui; Deng, Qu; Chao, Hsueh-Ping et al. (2018) Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses. Nat Commun 9:3600
Fiandalo, Michael V; Wilton, John H; Mantione, Krystin M et al. (2018) Serum-free complete medium, an alternative medium to mimic androgen deprivation in human prostate cancer cell line models. Prostate 78:213-221
Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso et al. (2017) Lipid degradation promotes prostate cancer cell survival. Oncotarget 8:38264-38275
Askew, Emily B; Bai, Suxia; Parris, Amanda B et al. (2017) Androgen receptor regulation by histone methyltransferase Suppressor of variegation 3-9 homolog 2 and Melanoma antigen-A11. Mol Cell Endocrinol 443:42-51
Komisarof, Justin; McCall, Matthew; Newman, Laurel et al. (2017) A four gene signature predictive of recurrent prostate cancer. Oncotarget 8:3430-3440
Su, Shifeng; Chen, Xiaoyu; Geng, Jiang et al. (2017) Melanoma antigen-A11 regulates substrate-specificity of Skp2-mediated protein degradation. Mol Cell Endocrinol 439:1-9
Stocking, John J; Fiandalo, Michael V; Pop, Elena A et al. (2016) Characterization of Prostate Cancer in a Functional Eunuch. J Natl Compr Canc Netw 14:1054-60
Frasinyuk, Mykhaylo S; Mrug, Galyna P; Bondarenko, Svitlana P et al. (2016) Antineoplastic Isoflavonoids Derived from Intermediate ortho-Quinone Methides Generated from Mannich Bases. ChemMedChem 11:600-11
Minges, John T; Grossman, Gail; Zhang, Ping et al. (2015) Post-translational Down-regulation of Melanoma Antigen-A11 (MAGE-A11) by Human p14-ARF Tumor Suppressor. J Biol Chem 290:25174-87
Montecinos, Viviana P; Morales, Claudio H; Fischer, Thomas H et al. (2015) Selective targeting of bioengineered platelets to prostate cancer vasculature: new paradigm for therapeutic modalities. J Cell Mol Med 19:1530-7

Showing the most recent 10 out of 103 publications