The goals of Core A are to provide cellular and molecular assays in support of all projects. The technologies and methods employed include flow and image cytometry; genetic analyses, cell and tissue culture support and development of common reagents. This Core and its personnel have had a long and productive history of application of specialized cell and molecular assays to the study of Werner Syndrome. These notably include flow and image cytometric assays of cell cycle, survival, DNA damage and telomere status, reagents and assays for Immunologic probes and gene silencing, as well as cell culture support for the broad variety of in vitro assays that is encompassed by this work. Both the characterization of WRN RecQ protein activities and the consequences of these activities on cellular phenotypes thus rely on the use of cell and molecular assays that are used in com man by all of the Projects within this P01 renewal application. The implementation, enhancement and where needed, development of these assays is a service will be most effectively and efficiently performed by this specialized Core in order to optimize their use by the P01 Projects.

Public Health Relevance

Both the characterization of WRN RecQ protein activities and the consequences of these activities on cellular phenotypes rely on the use of Core A cell and molecular assays that are used in common by all of the Projects within this Program Project.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA077852-14
Application #
8375351
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
14
Fiscal Year
2012
Total Cost
$198,808
Indirect Cost
$75,889
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Welcsh, Piri; Kehrli, Keffy; Lazarchuk, Pavlo et al. (2016) Application of the microfluidic-assisted replication track analysis to measure DNA repair in human and mouse cells. Methods 108:99-110
Tokita, Mari; Kennedy, Scott R; Risques, Rosa Ana et al. (2016) Werner syndrome through the lens of tissue and tumour genomics. Sci Rep 6:32038
Loeb, Lawrence A (2016) Human Cancers Express a Mutator Phenotype: Hypothesis, Origin, and Consequences. Cancer Res 76:2057-9
Reid-Bayliss, Kate S; Arron, Sarah T; Loeb, Lawrence A et al. (2016) Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency. Proc Natl Acad Sci U S A 113:10151-6
Bosch, Linda J W; Luo, Yanxin; Lao, Victoria V et al. (2016) WRN Promoter CpG Island Hypermethylation Does Not Predict More Favorable Outcomes for Patients with Metastatic Colorectal Cancer Treated with Irinotecan-Based Therapy. Clin Cancer Res 22:4612-22
Cohen, Stacey A; Wu, Chen; Yu, Ming et al. (2016) Evaluation of CpG Island Methylator Phenotype as a Biomarker in Colorectal Cancer Treated With Adjuvant Oxaliplatin. Clin Colorectal Cancer 15:164-9
Ahn, Eun Hyun; Lee, Seung Hyuk; Kim, Joon Yup et al. (2016) Decreased Mitochondrial Mutagenesis during Transformation of Human Breast Stem Cells into Tumorigenic Cells. Cancer Res 76:4569-78
Tang, Weiliang; Robles, Ana I; Beyer, Richard P et al. (2016) The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum Mol Genet 25:2060-2069
Fox, Edward J; Salk, Jesse J; Loeb, Lawrence A (2016) Exploring the implications of distinct mutational signatures and mutation rates in aging and cancer. Genome Med 8:30
Kehrli, Keffy; Phelps, Michael; Lazarchuk, Pavlo et al. (2016) Class I Histone Deacetylase HDAC1 and WRN RECQ Helicase Contribute Additively to Protect Replication Forks upon Hydroxyurea-induced Arrest. J Biol Chem 291:24487-24503

Showing the most recent 10 out of 120 publications