DNA repair proteins affect the response of cells to genotoxic stresses, and are often mutated or silenced in cancers. The RecQ helicases are a family of DNA repair proteins whose inactivation can predispose individuals to cancer (e.g. Werner syndrome, etc.) and can enhance the anti-tumor effects of chemotherapy. The biological significance of inactivation of the RecQ helicases in cancer is largely unknown, although predicted to be of importance based ?on studies of WRN and BlM in colorectal and breast cancer. Thus, we will assess the expression of the RecQ helicases, BlM, WRN, RECQL, RECQL4, and RECQL5 as well as candidate RECQ helicase interacting proteins in colorectal and breast cancer, and will determine how these proteins affect the responsiveness of these cancers to chemotherapeutic agents, especially TOPO1 inhibitors. Furthermore, WRN and likely the other RecQ helicases can be inactivated in cancer by an epigenetic mechanism-aberrant DNA methylation. Thus, the role of DNA methylation in silencing the RecQ helicases will be assessed and correlated with the clinical behavior of these cancers.
The Specific Aims of these studies are:
Aim 1 : To determine the frequency of loss of expression and epigenetic inactivation of RecQ helicases in common epithelial cancers: colorectal cancer and breast cancer.
Aim 2 : To determine the role of WRN, BlM, and RECQL4 inactivation and RECQ helicase interacting proteins in modifying the effect of chemotherapy on colorectal cancers (CRC).
Aim3 : To determine the role of WRN, BlM, and RECQL4 inactivation and RECQ helicase interacting proteins in modulating the effect of chemotherapy on breast cancers (BrCA).
In Aims 2 and 3, The RECQ helicase interacting proteins to be studied will be selected from candidates that are genetically or epigenetically altered in CRC or BrCA (e.g. MRE11 and MlH1) and aberrantly expressed. We will determine if methylation or loss of expression of the RECQ helicases and/or intereacting proteins affects sensitivity to chemotherapy by correlating the methylation and expression status of these genes in to response to treatment using two well annotated cohorts from clinical trials (CALBGB 89803 and SWOG S9313). These studies will be done with the support of Core A and Core C as well as Projects 2 and 3.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
United States
Zip Code
Reid-Bayliss, Kate S; Loeb, Lawrence A (2017) Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations. Proc Natl Acad Sci U S A 114:9415-9420
Kamath-Loeb, Ashwini S; Zavala-van Rankin, Diego G; Flores-Morales, Jeny et al. (2017) Homozygosity for the WRN Helicase-Inactivating Variant, R834C, does not confer a Werner syndrome clinical phenotype. Sci Rep 7:44081
Oshima, Junko; Sidorova, Julia M; Monnat Jr, Raymond J (2017) Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105-114
Yuan, Zixu; Baker, Kelsey; Redman, Mary W et al. (2017) Dynamic plasma microRNAs are biomarkers for prognosis and early detection of recurrence in colorectal cancer. Br J Cancer 117:1202-1210
Poole, William; Leinonen, Kalle; Shmulevich, Ilya et al. (2017) Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression. PLoS Comput Biol 13:e1005347
Fu, Wenqing; Ligabue, Alessio; Rogers, Kai J et al. (2017) Human RECQ Helicase Pathogenic Variants, Population Variation and ""Missing"" Diseases. Hum Mutat 38:193-203
Beckman, Robert A; Loeb, Lawrence A (2017) Evolutionary dynamics and significance of multiple subclonal mutations in cancer. DNA Repair (Amst) 56:7-15
Fox, Edward J; Salk, Jesse J; Loeb, Lawrence A (2016) Exploring the implications of distinct mutational signatures and mutation rates in aging and cancer. Genome Med 8:30
Tokita, Mari; Kennedy, Scott R; Risques, Rosa Ana et al. (2016) Werner syndrome through the lens of tissue and tumour genomics. Sci Rep 6:32038
Reid-Bayliss, Kate S; Arron, Sarah T; Loeb, Lawrence A et al. (2016) Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency. Proc Natl Acad Sci U S A 113:10151-6

Showing the most recent 10 out of 128 publications