Core A will oversee the administrative coordination of the various clinical and laboratory studies outlined in this Program Project. It will integrate scientific and clinical efforts within and between Projects, and assure the translation of laboratory findings to the bedside;and conversely, the initiation of laboratory studies stemming from clinical observations. During the prior funding period, the infrastructure has been created to have seemless communication and exchange of data between Projects, facilitating collaborative preclinical studies and clinical trials. Multiple joint publications, completed and ongoing clinical trials, and the translation of several novel targeted therapies from bench to bedside confirm the communication and integration of our efforts. This Core will continue to facilitate exchange of information among the Program members, as well as the internal and external advisory committees. It will provide clinical research nursing support for the proposed clinical trials. In addition, as in the previous funding period, a clinical study coordinator will assure appropriate sample acquisition and trafficking. The grants administrator will allocate resources in a timely and integrated fashion to facilitate successful completion of the proposed studies. Core A will provide these functions: 1. To integrate scientific and clinical efforts within and between Projects 2. To assure translation of laboratory findings to the bedside;and conversely, the initiation of laboratory studies stemming from clinical observations. 3. To provide administrative support for the Projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA078378-11A2
Application #
7782206
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Project Start
2009-12-01
Project End
2014-11-30
Budget Start
2009-12-01
Budget End
2011-03-31
Support Year
11
Fiscal Year
2010
Total Cost
$197,397
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Cholujova, Danka; Bujnakova, Zdenka; Dutkova, Erika et al. (2017) Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol 179:756-771
Hideshima, Teru; Cottini, Francesca; Nozawa, Yoshihisa et al. (2017) p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood 129:1308-1319
Feng, Xiaoyan; Zhang, Li; Acharya, Chirag et al. (2017) Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Clin Cancer Res 23:4290-4300
Yin, Li; Tagde, Ashujit; Gali, Reddy et al. (2017) MUC1-C is a target in lenalidomide resistant multiple myeloma. Br J Haematol 178:914-926
Jiang, H; Acharya, C; An, G et al. (2016) SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 30:399-408
Ohguchi, Hiroto; Hideshima, Teru; Bhasin, Manoj K et al. (2016) The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun 7:10258
Bommarito, Davide; Martin, Allison; Forcade, Edouard et al. (2016) Enhancement of tumor cell susceptibility to natural killer cell activity through inhibition of the PI3K signaling pathway. Cancer Immunol Immunother 65:355-66
Stroopinsky, Dina; Kufe, Donald; Avigan, David (2016) MUC1 in hematological malignancies. Leuk Lymphoma 57:2489-98
An, Gang; Acharya, Chirag; Feng, Xiaoyan et al. (2016) Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood 128:1590-603
Amodio, Nicola; Stamato, Maria Angelica; Gullà, Anna Maria et al. (2016) Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Mol Cancer Ther 15:1364-75

Showing the most recent 10 out of 262 publications